File size: 23,736 Bytes
1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 ee63bc1 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 680dd84 1799ef3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 |
import math
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
logging,
)
from typing import List, Optional, Tuple, Union
from .configuration_gpt_refact import GPTRefactConfig
logger = logging.get_logger(__name__)
@torch.jit.script
def upcast_masked_softmax(
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
x = torch.where(mask, x, mask_value)
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
return x
@torch.jit.script
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
input_dtype = x.dtype
x = x.to(softmax_dtype) * scale
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
return x
@torch.jit.script
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
x = torch.where(mask, x, mask_value)
x = torch.nn.functional.softmax(x, dim=-1)
return x
@torch.jit.script
def _get_slopes(attn_heads: int, dev: torch.device) -> torch.Tensor:
"""
## Get head-specific slope $m$ for each head
* `n_heads` is the number of heads in the attention layer $n$
The slope for first head is
$$\frac{1}{2^{\frac{8}{n}}} = 2^{-\frac{8}{n}}$$
The slopes for the rest of the heads are in a geometric series with a ratio same as above.
For instance when the number of heads is $8$ the slopes are
$$\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}$$
"""
# Get the closest power of 2 to `n_heads`.
# If `n_heads` is not a power of 2, then we first calculate slopes to the closest (smaller) power of 2,
# and then add the remaining slopes.
n = 2 ** math.floor(math.log(attn_heads, 2))
# $2^{-\frac{8}{n}}$
m_0 = 2.0 ** (-8.0 / n)
# $2^{-1\frac{8}{n}}, 2^{-2 \frac{8}{n}}, 2^{-3 \frac{8}{n}}, \dots$
m = torch.pow(m_0, torch.arange(1, 1 + n, device=dev))
# If `n_heads` is not a power of 2, then we add the remaining slopes.
# We calculate the remaining slopes for $n * 2$ (avoiding slopes added previously).
# And pick the slopes upto `n_heads`.
if n < attn_heads:
# $2^{-\frac{8}{2n}}$
m_hat_0 = 2.0 ** (-4.0 / n)
# $2^{-1\frac{8}{2n}}, 2^{-3 \frac{8}{2n}}, 2^{-5 \frac{8}{2n}}, \dots$
# Note that we take steps by $2$ to avoid slopes added previously.
m_hat = torch.pow(m_hat_0, torch.arange(1, 1 + 2 * (attn_heads - n), 2, device=dev))
# Concatenate the slopes with the remaining slopes.
m = torch.cat([m, m_hat])
return m
@torch.jit.script
def get_alibi_biases(
B: int,
T: int,
attn_heads: int,
dev: torch.device,
dtype: torch.dtype,
causal: bool = True) -> torch.Tensor:
"""
## Calculate the attention biases matrix
* `n_heads` is the number of heads in the attention layer
* `mask` is the attention mask of shape `[seq_len_q, seq_len_k]`
This returns a matrix of shape `[seq_len_q, seq_len_k, n_heads, ]` with ALiBi attention biases.
"""
# Get slopes $m$ for each head
if causal:
mask = (torch.triu(torch.ones((T, T), device=dev)) == 1).transpose(0, 1)
else:
mask = torch.ones((T, T), device=dev, dtype=torch.bool)
m = _get_slopes(attn_heads, dev)
# Calculate distances $[0, 1, \dots, N]$
# Here we calculate the distances using the mask.
#
# Since it's causal mask we can just use $[0, 1, \dots, N]$ too.
# `distance = torch.arange(mask.shape[1], dtype=torch.long, device=mask.device)[None, :]`
distance = mask.cumsum(dim=-1)
# Multiply them pair-wise to get the AliBi bias matrix
biases = distance[:, :, None] * m[None, None, :]
biases = biases.permute(2, 0, 1)[None, :, :T, :T]
biases = biases.repeat(B, 1, 1, 1)
return biases.to(dtype).contiguous()
class Attention(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
self.mask_value = None
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.kv_attn_heads = 1
self.scale = self.head_dim ** -0.5
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.layer_idx = layer_idx
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
self.scale_attention_softmax_in_fp32 = (
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
)
self.q = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
self.k = nn.Linear(self.embed_dim, self.head_dim, bias=False)
self.v = nn.Linear(self.embed_dim, self.head_dim, bias=False)
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
def _attn(self, query, key, value, attention_mask=None, alibi=None):
dtype = query.dtype
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
upcast = dtype != softmax_dtype
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
attn_weights = alibi + torch.matmul(query * self.scale, key)
if upcast:
if attention_mask is None:
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
else:
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
else:
if attention_mask is not None:
attn_weights = torch.masked_fill(attn_weights, attention_mask, -10000)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_output = torch.matmul(attn_weights, value)
return attn_output, attn_weights
def _split_heads(self, tensor):
new_shape = tensor.shape[:-1] + (self.num_heads, self.head_dim)
tensor = tensor.view(new_shape)
return tensor.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
alibi: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor, Optional[torch.Tensor]],
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
]:
b, t, _ = hidden_states.shape
query = self.q(hidden_states)
key = self.k(hidden_states)
value = self.v(hidden_states)
query = self._split_heads(query)
key = key.view(b, t, self.kv_attn_heads, self.head_dim).permute(0, 2, 1, 3)
value = value.view(b, t, self.kv_attn_heads, self.head_dim).permute(0, 2, 1, 3)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, alibi)
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
attn_output = self.c_proj(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
class MLP(nn.Module):
def __init__(self, intermediate_size, config, multiple_of: int = 256):
super().__init__()
embed_dim = config.hidden_size
hidden_dim = intermediate_size
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.linear_1 = nn.Linear(embed_dim, hidden_dim, bias=False)
self.linear_3 = nn.Linear(embed_dim, hidden_dim, bias=False)
self.c_proj = nn.Linear(hidden_dim, embed_dim, bias=False)
def forward(self, x: Optional[Tuple[torch.Tensor]]) -> torch.Tensor:
x1 = F.silu(self.linear_1(x))
x2 = self.linear_3(x)
x = self.c_proj(x1 * x2)
return x
class LayerNormNoBias(nn.Module):
def __init__(self, shape: int, eps: float = 1e-5):
super().__init__()
self.shape = (shape,)
self.eps = eps
self.weight = nn.Parameter(torch.empty(self.shape))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.layer_norm(x, self.shape, self.weight, None, self.eps)
class GPTRefactBlock(nn.Module):
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
self.attn = Attention(config, layer_idx=layer_idx)
self.ln_2 = LayerNormNoBias(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = MLP(self.inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.Tensor]],
layer_past: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
alibi: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
]:
hidden_states_norm = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states_norm,
layer_past=layer_past,
attention_mask=attention_mask,
alibi=alibi,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
mix = attn_output + hidden_states
norm_mix = self.ln_2(mix)
feed_forward_hidden_states = self.mlp(norm_mix)
# residual connection
hidden_states = mix + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class GPTRefactPreTrainedModel(PreTrainedModel):
config_class = GPTRefactConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["GPTRefactBlock"]
_skip_keys_device_placement = "past_key_values"
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
if isinstance(module, (MLP, Attention)):
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
module.c_proj.weight.data.normal_(
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
)
module.c_proj._is_hf_initialized = True
elif isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNormNoBias):
module.weight.data.fill_(1.0)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, GPTRefactModel):
module.gradient_checkpointing = value
class GPTRefactModel(GPTRefactPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.h = nn.ModuleList([GPTRefactBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
max_positions = config.max_position_embeddings
self.register_buffer(
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
@staticmethod
def _make_mask(seq_len: int, past_key_values_length: int):
# prompt
if past_key_values_length == 0:
mask = torch.ones((seq_len, seq_len + past_key_values_length), dtype=torch.bool)
mask = torch.triu(mask, 1)
else:
mask = torch.zeros((seq_len, seq_len + past_key_values_length), dtype=torch.bool)
return mask
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.Tensor]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
# Self-attention mask.
query_length = input_shape[-1]
seq_length_with_past = past_length + query_length
if attention_mask is None:
attention_mask = self._make_mask(query_length, past_length).to(device)
else:
attention_mask = attention_mask.to(device)
hidden_states = self.wte(input_ids) if inputs_embeds is None else inputs_embeds
alibi = get_alibi_biases(hidden_states.shape[0], seq_length_with_past,
self.num_heads, device, self.wte.weight.dtype)[:, :, -query_length:, :]
output_shape = input_shape + (hidden_states.size(-1),)
presents = [] if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
# None for past_key_value
return module(*inputs, use_cache, output_attentions)
return custom_forward
outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(block),
hidden_states,
None,
attention_mask,
alibi
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
alibi=alibi,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache:
presents.append(outputs[1])
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
class GPTRefactForCausalLM(GPTRefactPreTrainedModel):
_tied_weights_keys = ["lm_head.weight", "ln_f.weight"]
def __init__(self, config):
super().__init__(config)
self.transformer = GPTRefactModel(config)
self.ln_f = LayerNormNoBias(self.transformer.embed_dim, eps=config.layer_norm_epsilon)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
if past_key_values is not None:
model_inputs = {"input_ids": input_ids[..., -1:]}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
}
)
return model_inputs
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
x = self.ln_f(hidden_states)
lm_logits = self.lm_head(x)
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)
@staticmethod
def _reorder_cache(
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
) -> Tuple[Tuple[torch.Tensor]]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
"""
return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
|