vivit-videomae-d2
This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3393
- Accuracy: 0.3190
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 6650
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.5973 | 0.1 | 665 | 2.5600 | 0.0937 |
2.5359 | 1.1 | 1330 | 2.4382 | 0.1767 |
2.0681 | 2.1 | 1995 | 2.4175 | 0.2154 |
2.2863 | 3.1 | 2660 | 2.3472 | 0.2166 |
2.1409 | 4.1 | 3325 | 2.4337 | 0.2049 |
2.1223 | 5.1 | 3990 | 2.3414 | 0.2821 |
2.041 | 6.1 | 4655 | 2.2474 | 0.2054 |
1.4722 | 7.1 | 5320 | 2.3306 | 0.2925 |
1.9404 | 8.1 | 5985 | 2.4100 | 0.2897 |
1.5395 | 9.1 | 6650 | 2.3393 | 0.3190 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 74
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for skywalker290/vivit-videomae-d2
Base model
MCG-NJU/videomae-base