File size: 3,785 Bytes
4fdbf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900133
4fdbf1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900133
4fdbf1a
 
 
 
 
1900133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fdbf1a
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
license: mit
tags:
- generated_from_trainer
model-index:
- name: bart-large-cnn-finetuned-quran
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bart-large-cnn-finetuned-quran

This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0519

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.7497        | 1.0   | 99   | 0.2608          |
| 0.1367        | 2.0   | 198  | 0.0607          |
| 0.0658        | 3.0   | 297  | 0.0529          |
| 0.0563        | 4.0   | 396  | 0.0521          |
| 0.0575        | 5.0   | 495  | 0.0522          |
| 0.0489        | 6.0   | 594  | 0.0518          |
| 0.0503        | 7.0   | 693  | 0.0511          |
| 0.0494        | 8.0   | 792  | 0.0532          |
| 0.0496        | 9.0   | 891  | 0.0512          |
| 0.0494        | 10.0  | 990  | 0.0515          |
| 0.051         | 11.0  | 1089 | 0.0517          |
| 0.0508        | 12.0  | 1188 | 0.0509          |
| 0.0543        | 13.0  | 1287 | 0.0516          |
| 0.0471        | 14.0  | 1386 | 0.0520          |
| 0.0483        | 15.0  | 1485 | 0.0519          |
| 0.0469        | 16.0  | 1584 | 0.0516          |
| 0.0478        | 17.0  | 1683 | 0.0514          |
| 0.0477        | 18.0  | 1782 | 0.0513          |
| 0.0479        | 19.0  | 1881 | 0.0511          |
| 0.0473        | 20.0  | 1980 | 0.0512          |
| 0.046         | 21.0  | 2079 | 0.0522          |
| 0.0481        | 22.0  | 2178 | 0.0514          |
| 0.0477        | 23.0  | 2277 | 0.0513          |
| 0.0476        | 24.0  | 2376 | 0.0514          |
| 0.047         | 25.0  | 2475 | 0.0517          |
| 0.0477        | 26.0  | 2574 | 0.0515          |
| 0.0461        | 27.0  | 2673 | 0.0515          |
| 0.0458        | 28.0  | 2772 | 0.0516          |
| 0.0463        | 29.0  | 2871 | 0.0518          |
| 0.0471        | 30.0  | 2970 | 0.0514          |
| 0.0452        | 31.0  | 3069 | 0.0518          |
| 0.0441        | 32.0  | 3168 | 0.0515          |
| 0.0477        | 33.0  | 3267 | 0.0519          |
| 0.0467        | 34.0  | 3366 | 0.0518          |
| 0.0464        | 35.0  | 3465 | 0.0515          |
| 0.045         | 36.0  | 3564 | 0.0517          |
| 0.0445        | 37.0  | 3663 | 0.0517          |
| 0.0449        | 38.0  | 3762 | 0.0515          |
| 0.0449        | 39.0  | 3861 | 0.0518          |
| 0.0454        | 40.0  | 3960 | 0.0518          |
| 0.0452        | 41.0  | 4059 | 0.0518          |
| 0.0448        | 42.0  | 4158 | 0.0518          |
| 0.0446        | 43.0  | 4257 | 0.0519          |
| 0.0448        | 44.0  | 4356 | 0.0519          |
| 0.0443        | 45.0  | 4455 | 0.0519          |
| 0.0452        | 46.0  | 4554 | 0.0519          |
| 0.0429        | 47.0  | 4653 | 0.0519          |
| 0.0455        | 48.0  | 4752 | 0.0519          |
| 0.0452        | 49.0  | 4851 | 0.0519          |
| 0.0441        | 50.0  | 4950 | 0.0519          |


### Framework versions

- Transformers 4.30.2
- Pytorch 2.1.2+cu121
- Datasets 2.18.0
- Tokenizers 0.13.3