UzRoBERTa-v2

This model achieves the following results on the evaluation set:

  • Loss: 1.9097

How to use

>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='sinonimayzer/UzRoBERTa-v2')
>>> unmasker("Kuchli yomg‘irlar tufayli bir qator <mask> kuchli sel oqishi kuzatildi.")

[{'score': 0.3318027853965759,
  'token': 4877,
  'token_str': ' hududlarda',
  'sequence': 'Kuchli yomg‘irlar tufayli bir qator hududlarda kuchli sel oqishi kuzatildi.'},
 {'score': 0.13175441324710846,
  'token': 14470,
  'token_str': ' viloyatlarda',
  'sequence': 'Kuchli yomg‘irlar tufayli bir qator viloyatlarda kuchli sel oqishi kuzatildi.'},
 {'score': 0.09735308587551117,
  'token': 13555,
  'token_str': ' tumanlarda',
  'sequence': 'Kuchli yomg‘irlar tufayli bir qator tumanlarda kuchli sel oqishi kuzatildi.'},
 {'score': 0.09112472087144852,
  'token': 12261,
  'token_str': ' shaharlarda',
  'sequence': 'Kuchli yomg‘irlar tufayli bir qator shaharlarda kuchli sel oqishi kuzatildi.'},
 {'score': 0.05940879508852959,
  'token': 2767,
  'token_str': ' joylarda',
  'sequence': 'Kuchli yomg‘irlar tufayli bir qator joylarda kuchli sel oqishi kuzatildi.'}]

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 92
  • eval_batch_size: 92
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 500000

Training results

Training Loss Epoch Step Validation Loss
2.3673 0.25 100000 2.4588
2.0797 0.51 200000 2.1653
1.9369 0.76 300000 2.0265
1.8545 1.02 400000 1.9456
1.8133 1.27 500000 1.9101

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sinonimayzer/UzRoBERTa-v2

Space using sinonimayzer/UzRoBERTa-v2 1

Collection including sinonimayzer/UzRoBERTa-v2