roberta-base-sst-2-16-13

This model is a fine-tuned version of roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1304
  • Accuracy: 0.9688

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 0.6964 0.5
No log 2.0 2 0.6964 0.5
No log 3.0 3 0.6964 0.5
No log 4.0 4 0.6964 0.5
No log 5.0 5 0.6964 0.5
No log 6.0 6 0.6964 0.5
No log 7.0 7 0.6964 0.5
No log 8.0 8 0.6964 0.5
No log 9.0 9 0.6964 0.5
0.6977 10.0 10 0.6964 0.5
0.6977 11.0 11 0.6963 0.5
0.6977 12.0 12 0.6963 0.5
0.6977 13.0 13 0.6963 0.5
0.6977 14.0 14 0.6963 0.5
0.6977 15.0 15 0.6962 0.5
0.6977 16.0 16 0.6962 0.5
0.6977 17.0 17 0.6962 0.5
0.6977 18.0 18 0.6962 0.5
0.6977 19.0 19 0.6961 0.5
0.6939 20.0 20 0.6961 0.5
0.6939 21.0 21 0.6961 0.5
0.6939 22.0 22 0.6960 0.5
0.6939 23.0 23 0.6960 0.5
0.6939 24.0 24 0.6959 0.5
0.6939 25.0 25 0.6959 0.5
0.6939 26.0 26 0.6958 0.5
0.6939 27.0 27 0.6958 0.5
0.6939 28.0 28 0.6958 0.5
0.6939 29.0 29 0.6957 0.5
0.6972 30.0 30 0.6957 0.5
0.6972 31.0 31 0.6956 0.5
0.6972 32.0 32 0.6956 0.5
0.6972 33.0 33 0.6955 0.5
0.6972 34.0 34 0.6954 0.5
0.6972 35.0 35 0.6954 0.5
0.6972 36.0 36 0.6953 0.5
0.6972 37.0 37 0.6953 0.5
0.6972 38.0 38 0.6952 0.5
0.6972 39.0 39 0.6951 0.5
0.6931 40.0 40 0.6950 0.5
0.6931 41.0 41 0.6950 0.5
0.6931 42.0 42 0.6949 0.5
0.6931 43.0 43 0.6948 0.5
0.6931 44.0 44 0.6947 0.5
0.6931 45.0 45 0.6947 0.5
0.6931 46.0 46 0.6946 0.5
0.6931 47.0 47 0.6945 0.5
0.6931 48.0 48 0.6944 0.5
0.6931 49.0 49 0.6944 0.5
0.6938 50.0 50 0.6943 0.5
0.6938 51.0 51 0.6942 0.5
0.6938 52.0 52 0.6941 0.5
0.6938 53.0 53 0.6941 0.5
0.6938 54.0 54 0.6940 0.5
0.6938 55.0 55 0.6939 0.5
0.6938 56.0 56 0.6938 0.5
0.6938 57.0 57 0.6937 0.5
0.6938 58.0 58 0.6936 0.5
0.6938 59.0 59 0.6935 0.5
0.6914 60.0 60 0.6934 0.5
0.6914 61.0 61 0.6933 0.5
0.6914 62.0 62 0.6932 0.5
0.6914 63.0 63 0.6931 0.5
0.6914 64.0 64 0.6930 0.5
0.6914 65.0 65 0.6929 0.5
0.6914 66.0 66 0.6928 0.5
0.6914 67.0 67 0.6926 0.5
0.6914 68.0 68 0.6925 0.5
0.6914 69.0 69 0.6924 0.5
0.6842 70.0 70 0.6923 0.5
0.6842 71.0 71 0.6921 0.5
0.6842 72.0 72 0.6920 0.5
0.6842 73.0 73 0.6918 0.5
0.6842 74.0 74 0.6917 0.5
0.6842 75.0 75 0.6915 0.5
0.6842 76.0 76 0.6914 0.5
0.6842 77.0 77 0.6912 0.5
0.6842 78.0 78 0.6910 0.5
0.6842 79.0 79 0.6908 0.5
0.6817 80.0 80 0.6906 0.5
0.6817 81.0 81 0.6904 0.5
0.6817 82.0 82 0.6902 0.5
0.6817 83.0 83 0.6900 0.5
0.6817 84.0 84 0.6897 0.5
0.6817 85.0 85 0.6895 0.5
0.6817 86.0 86 0.6892 0.5
0.6817 87.0 87 0.6889 0.5
0.6817 88.0 88 0.6886 0.5
0.6817 89.0 89 0.6882 0.5
0.6684 90.0 90 0.6879 0.5
0.6684 91.0 91 0.6875 0.5
0.6684 92.0 92 0.6870 0.5
0.6684 93.0 93 0.6866 0.5312
0.6684 94.0 94 0.6861 0.5
0.6684 95.0 95 0.6856 0.5
0.6684 96.0 96 0.6850 0.5
0.6684 97.0 97 0.6843 0.5938
0.6684 98.0 98 0.6837 0.7188
0.6684 99.0 99 0.6829 0.75
0.6657 100.0 100 0.6821 0.75
0.6657 101.0 101 0.6812 0.7812
0.6657 102.0 102 0.6802 0.7812
0.6657 103.0 103 0.6791 0.7812
0.6657 104.0 104 0.6780 0.7812
0.6657 105.0 105 0.6767 0.7812
0.6657 106.0 106 0.6752 0.8125
0.6657 107.0 107 0.6736 0.75
0.6657 108.0 108 0.6717 0.75
0.6657 109.0 109 0.6696 0.75
0.6423 110.0 110 0.6671 0.75
0.6423 111.0 111 0.6642 0.7812
0.6423 112.0 112 0.6610 0.8125
0.6423 113.0 113 0.6572 0.8438
0.6423 114.0 114 0.6528 0.8125
0.6423 115.0 115 0.6477 0.8125
0.6423 116.0 116 0.6415 0.7812
0.6423 117.0 117 0.6342 0.7812
0.6423 118.0 118 0.6262 0.7812
0.6423 119.0 119 0.6180 0.7812
0.574 120.0 120 0.6090 0.7812
0.574 121.0 121 0.5987 0.7812
0.574 122.0 122 0.5867 0.7812
0.574 123.0 123 0.5732 0.7812
0.574 124.0 124 0.5579 0.7812
0.574 125.0 125 0.5410 0.8125
0.574 126.0 126 0.5226 0.9062
0.574 127.0 127 0.5031 0.9062
0.574 128.0 128 0.4823 0.9062
0.574 129.0 129 0.4605 0.9062
0.4243 130.0 130 0.4378 0.9375
0.4243 131.0 131 0.4148 0.9375
0.4243 132.0 132 0.3925 0.9375
0.4243 133.0 133 0.3714 0.9375
0.4243 134.0 134 0.3512 0.9688
0.4243 135.0 135 0.3324 0.9688
0.4243 136.0 136 0.3139 0.9688
0.4243 137.0 137 0.2955 0.9688
0.4243 138.0 138 0.2787 0.9375
0.4243 139.0 139 0.2633 0.9375
0.1979 140.0 140 0.2484 0.9688
0.1979 141.0 141 0.2332 0.9688
0.1979 142.0 142 0.2174 0.9688
0.1979 143.0 143 0.2015 0.9688
0.1979 144.0 144 0.1867 0.9688
0.1979 145.0 145 0.1734 0.9375
0.1979 146.0 146 0.1616 0.9375
0.1979 147.0 147 0.1511 0.9375
0.1979 148.0 148 0.1424 0.9688
0.1979 149.0 149 0.1354 0.9688
0.0588 150.0 150 0.1304 0.9688

Framework versions

  • Transformers 4.32.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.4.0
  • Tokenizers 0.13.3
Downloads last month
105
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simonycl/roberta-base-sst-2-16-13

Finetuned
(1630)
this model