TWON-Agents
Collection
4 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-3.2-3B-Instruct on the generator dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.5602 | 0.0423 | 200 | 2.3015 |
2.1761 | 0.0845 | 400 | 2.0341 |
1.8998 | 0.1268 | 600 | 1.7808 |
1.6962 | 0.1691 | 800 | 1.6139 |
1.5494 | 0.2114 | 1000 | 1.4910 |
1.4478 | 0.2536 | 1200 | 1.4047 |
1.3865 | 0.2959 | 1400 | 1.3415 |
1.3407 | 0.3382 | 1600 | 1.2891 |
1.2808 | 0.3805 | 1800 | 1.2429 |
1.2365 | 0.4227 | 2000 | 1.2054 |
1.2058 | 0.4650 | 2200 | 1.1766 |
1.1799 | 0.5073 | 2400 | 1.1484 |
1.147 | 0.5496 | 2600 | 1.1282 |
1.1235 | 0.5918 | 2800 | 1.1087 |
1.1228 | 0.6341 | 3000 | 1.0923 |
1.0935 | 0.6764 | 3200 | 1.0765 |
1.0813 | 0.7187 | 3400 | 1.0629 |
1.0671 | 0.7609 | 3600 | 1.0504 |
1.0448 | 0.8032 | 3800 | 1.0390 |
1.041 | 0.8455 | 4000 | 1.0293 |
1.0167 | 0.8878 | 4200 | 1.0196 |
1.0293 | 0.9300 | 4400 | 1.0091 |
1.0254 | 0.9723 | 4600 | 1.0002 |
1.0053 | 1.0146 | 4800 | 0.9917 |
0.9957 | 1.0569 | 5000 | 0.9833 |
0.9976 | 1.0991 | 5200 | 0.9772 |
0.9891 | 1.1414 | 5400 | 0.9708 |
0.9648 | 1.1837 | 5600 | 0.9622 |
0.9711 | 1.2260 | 5800 | 0.9551 |
0.9569 | 1.2682 | 6000 | 0.9497 |
0.9526 | 1.3105 | 6200 | 0.9433 |
0.9571 | 1.3528 | 6400 | 0.9362 |
0.9265 | 1.3951 | 6600 | 0.9310 |
0.9274 | 1.4373 | 6800 | 0.9229 |
0.929 | 1.4796 | 7000 | 0.9190 |
0.9224 | 1.5219 | 7200 | 0.9128 |
0.9051 | 1.5642 | 7400 | 0.9071 |
0.9066 | 1.6064 | 7600 | 0.9014 |
0.9067 | 1.6487 | 7800 | 0.8962 |
0.8986 | 1.6910 | 8000 | 0.8905 |
0.8967 | 1.7332 | 8200 | 0.8847 |
0.8883 | 1.7755 | 8400 | 0.8806 |
0.8844 | 1.8178 | 8600 | 0.8745 |
0.8833 | 1.8601 | 8800 | 0.8710 |
0.8805 | 1.9023 | 9000 | 0.8649 |
0.8722 | 1.9446 | 9200 | 0.8600 |
0.868 | 1.9869 | 9400 | 0.8552 |
0.8597 | 2.0292 | 9600 | 0.8499 |
0.8527 | 2.0714 | 9800 | 0.8456 |
0.8444 | 2.1137 | 10000 | 0.8410 |
0.8472 | 2.1560 | 10200 | 0.8363 |
0.8416 | 2.1983 | 10400 | 0.8321 |
0.8395 | 2.2405 | 10600 | 0.8271 |
0.8295 | 2.2828 | 10800 | 0.8221 |
0.8307 | 2.3251 | 11000 | 0.8173 |
0.8221 | 2.3674 | 11200 | 0.8130 |
0.8144 | 2.4096 | 11400 | 0.8086 |
0.8197 | 2.4519 | 11600 | 0.8048 |
0.8121 | 2.4942 | 11800 | 0.8003 |
0.8038 | 2.5365 | 12000 | 0.7953 |
0.8007 | 2.5787 | 12200 | 0.7917 |
0.808 | 2.6210 | 12400 | 0.7878 |
0.8047 | 2.6633 | 12600 | 0.7827 |
0.7908 | 2.7056 | 12800 | 0.7795 |
0.7963 | 2.7478 | 13000 | 0.7755 |
0.782 | 2.7901 | 13200 | 0.7718 |
0.7899 | 2.8324 | 13400 | 0.7664 |
0.7712 | 2.8747 | 13600 | 0.7623 |
0.7737 | 2.9169 | 13800 | 0.7581 |
0.784 | 2.9592 | 14000 | 0.7553 |
0.7661 | 3.0015 | 14200 | 0.7515 |
0.759 | 3.0438 | 14400 | 0.7478 |
0.7534 | 3.0860 | 14600 | 0.7442 |
0.7526 | 3.1283 | 14800 | 0.7398 |
0.7526 | 3.1706 | 15000 | 0.7365 |
0.7413 | 3.2129 | 15200 | 0.7344 |
0.746 | 3.2551 | 15400 | 0.7296 |
0.7469 | 3.2974 | 15600 | 0.7264 |
0.7384 | 3.3397 | 15800 | 0.7221 |
0.7357 | 3.3819 | 16000 | 0.7191 |
0.7298 | 3.4242 | 16200 | 0.7173 |
0.7245 | 3.4665 | 16400 | 0.7122 |
0.7283 | 3.5088 | 16600 | 0.7087 |
0.7333 | 3.5510 | 16800 | 0.7062 |
0.7252 | 3.5933 | 17000 | 0.7040 |
0.7242 | 3.6356 | 17200 | 0.6987 |
0.7174 | 3.6779 | 17400 | 0.6956 |
0.7132 | 3.7201 | 17600 | 0.6931 |
0.7093 | 3.7624 | 17800 | 0.6898 |
0.7027 | 3.8047 | 18000 | 0.6869 |
0.7177 | 3.8470 | 18200 | 0.6838 |
0.707 | 3.8892 | 18400 | 0.6805 |
0.7091 | 3.9315 | 18600 | 0.6786 |
0.7031 | 3.9738 | 18800 | 0.6749 |
0.6913 | 4.0161 | 19000 | 0.6723 |
0.6895 | 4.0583 | 19200 | 0.6697 |
0.6858 | 4.1006 | 19400 | 0.6666 |
0.678 | 4.1429 | 19600 | 0.6645 |
0.6852 | 4.1852 | 19800 | 0.6622 |
0.6787 | 4.2274 | 20000 | 0.6586 |
0.6784 | 4.2697 | 20200 | 0.6568 |
0.6771 | 4.3120 | 20400 | 0.6528 |
0.6697 | 4.3543 | 20600 | 0.6509 |
0.6698 | 4.3965 | 20800 | 0.6481 |
0.6792 | 4.4388 | 21000 | 0.6455 |
0.6741 | 4.4811 | 21200 | 0.6436 |
0.6582 | 4.5234 | 21400 | 0.6402 |
0.6648 | 4.5656 | 21600 | 0.6380 |
0.6606 | 4.6079 | 21800 | 0.6363 |
0.6598 | 4.6502 | 22000 | 0.6341 |
0.6696 | 4.6925 | 22200 | 0.6312 |
0.6604 | 4.7347 | 22400 | 0.6298 |
0.6611 | 4.7770 | 22600 | 0.6274 |
0.6515 | 4.8193 | 22800 | 0.6260 |
0.6528 | 4.8616 | 23000 | 0.6228 |
0.6557 | 4.9038 | 23200 | 0.6201 |
0.6473 | 4.9461 | 23400 | 0.6184 |
0.6506 | 4.9884 | 23600 | 0.6168 |
0.6387 | 5.0306 | 23800 | 0.6146 |
0.638 | 5.0729 | 24000 | 0.6139 |
0.6389 | 5.1152 | 24200 | 0.6111 |
0.641 | 5.1575 | 24400 | 0.6103 |
0.6278 | 5.1997 | 24600 | 0.6080 |
0.6332 | 5.2420 | 24800 | 0.6068 |
0.6214 | 5.2843 | 25000 | 0.6047 |
0.6325 | 5.3266 | 25200 | 0.6020 |
0.6312 | 5.3688 | 25400 | 0.6000 |
0.6278 | 5.4111 | 25600 | 0.5979 |
0.6237 | 5.4534 | 25800 | 0.5962 |
0.6263 | 5.4957 | 26000 | 0.5942 |
0.6228 | 5.5379 | 26200 | 0.5938 |
0.625 | 5.5802 | 26400 | 0.5919 |
0.6271 | 5.6225 | 26600 | 0.5905 |
0.6206 | 5.6648 | 26800 | 0.5880 |
0.6204 | 5.7070 | 27000 | 0.5872 |
0.617 | 5.7493 | 27200 | 0.5857 |
0.6138 | 5.7916 | 27400 | 0.5844 |
0.6216 | 5.8339 | 27600 | 0.5817 |
0.6122 | 5.8761 | 27800 | 0.5805 |
0.6186 | 5.9184 | 28000 | 0.5793 |
0.6164 | 5.9607 | 28200 | 0.5783 |
0.6117 | 6.0030 | 28400 | 0.5769 |
0.6068 | 6.0452 | 28600 | 0.5749 |
0.6034 | 6.0875 | 28800 | 0.5740 |
0.6085 | 6.1298 | 29000 | 0.5720 |
0.6068 | 6.1721 | 29200 | 0.5710 |
0.603 | 6.2143 | 29400 | 0.5697 |
0.5979 | 6.2566 | 29600 | 0.5694 |
0.5941 | 6.2989 | 29800 | 0.5686 |
0.6022 | 6.3412 | 30000 | 0.5673 |
0.5999 | 6.3834 | 30200 | 0.5656 |
0.6064 | 6.4257 | 30400 | 0.5645 |
0.5982 | 6.4680 | 30600 | 0.5633 |
0.5863 | 6.5103 | 30800 | 0.5630 |
0.5942 | 6.5525 | 31000 | 0.5619 |
0.5969 | 6.5948 | 31200 | 0.5607 |
0.595 | 6.6371 | 31400 | 0.5600 |
0.6004 | 6.6793 | 31600 | 0.5583 |
0.593 | 6.7216 | 31800 | 0.5584 |
0.5903 | 6.7639 | 32000 | 0.5579 |
0.5917 | 6.8062 | 32200 | 0.5568 |
0.5946 | 6.8484 | 32400 | 0.5563 |
0.5876 | 6.8907 | 32600 | 0.5560 |
0.593 | 6.9330 | 32800 | 0.5543 |
0.5848 | 6.9753 | 33000 | 0.5527 |
0.5865 | 7.0175 | 33200 | 0.5523 |
0.5872 | 7.0598 | 33400 | 0.5524 |
0.583 | 7.1021 | 33600 | 0.5511 |
0.5838 | 7.1444 | 33800 | 0.5512 |
0.5819 | 7.1866 | 34000 | 0.5502 |
0.5833 | 7.2289 | 34200 | 0.5492 |
0.5826 | 7.2712 | 34400 | 0.5493 |
0.5813 | 7.3135 | 34600 | 0.5487 |
0.5815 | 7.3557 | 34800 | 0.5477 |
0.582 | 7.3980 | 35000 | 0.5472 |
0.5729 | 7.4403 | 35200 | 0.5466 |
0.5769 | 7.4826 | 35400 | 0.5457 |
0.5864 | 7.5248 | 35600 | 0.5457 |
0.5853 | 7.5671 | 35800 | 0.5453 |
0.5771 | 7.6094 | 36000 | 0.5449 |
0.5786 | 7.6517 | 36200 | 0.5447 |
0.5839 | 7.6939 | 36400 | 0.5443 |
0.5759 | 7.7362 | 36600 | 0.5435 |
0.5804 | 7.7785 | 36800 | 0.5436 |
0.5826 | 7.8208 | 37000 | 0.5437 |
0.5829 | 7.8630 | 37200 | 0.5434 |
0.574 | 7.9053 | 37400 | 0.5431 |
0.5756 | 7.9476 | 37600 | 0.5432 |
0.5722 | 7.9899 | 37800 | 0.5430 |
Base model
meta-llama/Llama-3.2-3B-Instruct