multimodla-Bitamin

This model is a fine-tuned version of ddobokki/vision-encoder-decoder-vit-gpt2-coco-ko on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0055
  • Rouge1: 11.8323
  • Rouge2: 6.4292
  • Rougel: 11.8967
  • Rougelsum: 11.883
  • Gen Len: 100.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
0.1504 1.0 2982 0.1027 0.2262 0.2262 0.2262 0.2262 100.0
0.0664 2.0 5964 0.0457 1.7181 1.2785 1.7523 1.7256 100.0
0.0281 3.0 8946 0.0185 5.3843 3.3178 5.4006 5.4032 100.0
0.0131 4.0 11928 0.0081 10.8352 5.9986 10.7776 10.8786 100.0
0.007 5.0 14910 0.0055 11.8323 6.4292 11.8967 11.883 100.0

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
14
Safetensors
Model size
240M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.