BART-commongen

This model is a fine-tuned version of facebook/bart-base on the gem dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1263
  • Spice: 0.4178

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 6317

Training results

Training Loss Epoch Step Validation Loss Spice
9.0971 0.05 100 4.1336 0.3218
3.5348 0.09 200 1.5467 0.3678
1.5099 0.14 300 1.1280 0.3821
1.2395 0.19 400 1.1178 0.3917
1.1827 0.24 500 1.0919 0.4086
1.1545 0.28 600 1.1028 0.4035
1.1363 0.33 700 1.1021 0.4187
1.1156 0.38 800 1.1231 0.4103
1.1077 0.43 900 1.1221 0.4117
1.0964 0.47 1000 1.1169 0.4088
1.0704 0.52 1100 1.1143 0.4133
1.0483 0.57 1200 1.1085 0.4058
1.0556 0.62 1300 1.1059 0.4249
1.0343 0.66 1400 1.0992 0.4102
1.0123 0.71 1500 1.1126 0.4104
1.0108 0.76 1600 1.1140 0.4177
1.005 0.81 1700 1.1264 0.4078
0.9822 0.85 1800 1.1256 0.4158
0.9918 0.9 1900 1.1345 0.4118
0.9664 0.95 2000 1.1087 0.4073
0.9532 1.0 2100 1.1217 0.4063
0.8799 1.04 2200 1.1229 0.4115
0.8665 1.09 2300 1.1263 0.4178

Framework versions

  • Transformers 4.9.2
  • Pytorch 1.9.0+cu102
  • Datasets 1.11.1.dev0
  • Tokenizers 0.10.3
New

Select AutoNLP in the “Train” menu to fine-tune this model automatically.

Downloads last month
1,949
Hosted inference API
Text2Text Generation
This model can be loaded on the Inference API on-demand.