Whisper Medium Fine Tuned 3000 Names SSD superU

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1246
  • Wer: 26.1364

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4987 0.2392 100 0.4556 51.7045
0.4092 0.4785 200 0.3531 48.5795
0.3696 0.7177 300 0.3179 48.0114
0.2694 0.9569 400 0.2911 38.6364
0.2162 1.1962 500 0.2809 36.6477
0.2378 1.4354 600 0.2682 34.9432
0.2057 1.6746 700 0.1950 28.9773
0.1681 1.9139 800 0.2118 36.3636
0.1217 2.1531 900 0.1847 26.9886
0.1235 2.3923 1000 0.1722 25.5682
0.1203 2.6316 1100 0.1655 26.7045
0.1182 2.8708 1200 0.1704 28.9773
0.062 3.1100 1300 0.1566 26.9886
0.0835 3.3493 1400 0.1455 23.8636
0.0738 3.5885 1500 0.1387 24.1477
0.0849 3.8278 1600 0.1354 25.0
0.0419 4.0670 1700 0.1298 24.4318
0.0512 4.3062 1800 0.1302 26.4205
0.0524 4.5455 1900 0.1251 26.4205
0.0411 4.7847 2000 0.1246 26.1364

Framework versions

  • Transformers 4.46.2
  • Pytorch 2.2.2+cu121
  • Datasets 3.1.0
  • Tokenizers 0.20.3
Downloads last month
6
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for shreyasdesaisuperU/whisper-medium-fine-tuned-names-3000

Finetuned
(2292)
this model