File size: 13,841 Bytes
09b13b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import argparse
import os
import numpy as np
import itertools
from pathlib import Path
import datetime
import time
import sys
from PIL import Image
from torchvision.transforms import Compose, Resize, ToTensor, Normalize, RandomCrop, RandomHorizontalFlip
from torchvision.utils import save_image, make_grid
from torch.utils.data import DataLoader
from modeling_cyclegan import GeneratorResNet, Discriminator
from utils import ReplayBuffer, LambdaLR
from datasets import load_dataset
from accelerate import Accelerator
import torch.nn as nn
import torch
def parse_args(args=None):
parser = argparse.ArgumentParser()
parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from")
parser.add_argument("--num_epochs", type=int, default=200, help="number of epochs of training")
parser.add_argument("--dataset_name", type=str, default="huggan/facades", help="name of the dataset")
parser.add_argument("--batch_size", type=int, default=1, help="size of the batches")
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--beta1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--beta2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--decay_epoch", type=int, default=100, help="epoch from which to start lr decay")
parser.add_argument("--num_workers", type=int, default=8, help="Number of CPU threads to use during batch generation")
parser.add_argument("--image_size", type=int, default=256, help="Size of images for training")
parser.add_argument("--channels", type=int, default=3, help="Number of image channels")
parser.add_argument("--sample_interval", type=int, default=100, help="interval between saving generator outputs")
parser.add_argument("--checkpoint_interval", type=int, default=-1, help="interval between saving model checkpoints")
parser.add_argument("--n_residual_blocks", type=int, default=9, help="number of residual blocks in generator")
parser.add_argument("--lambda_cyc", type=float, default=10.0, help="cycle loss weight")
parser.add_argument("--lambda_id", type=float, default=5.0, help="identity loss weight")
parser.add_argument("--fp16", action="store_true", help="If passed, will use FP16 training.")
parser.add_argument(
"--mixed_precision",
type=str,
default="no",
choices=["no", "fp16", "bf16"],
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model to the HuggingFace hub after training.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
required="--push_to_hub" in sys.argv,
type=Path,
help="Path to save the model. Will be created if it doesn't exist already.",
)
parser.add_argument(
"--model_name",
required="--push_to_hub" in sys.argv,
type=str,
help="Name of the model on the hub.",
)
parser.add_argument(
"--organization_name",
required=False,
default="huggan",
type=str,
help="Organization name to push to, in case args.push_to_hub is specified.",
)
return parser.parse_args(args=args)
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
if hasattr(m, "bias") and m.bias is not None:
torch.nn.init.constant_(m.bias.data, 0.0)
elif classname.find("BatchNorm2d") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def training_function(config, args):
accelerator = Accelerator(fp16=args.fp16, cpu=args.cpu, mixed_precision=args.mixed_precision)
# Create sample and checkpoint directories
os.makedirs("images/%s" % args.dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % args.dataset_name, exist_ok=True)
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
input_shape = (args.channels, args.image_size, args.image_size)
# Calculate output shape of image discriminator (PatchGAN)
output_shape = (1, args.image_size // 2 ** 4, args.image_size // 2 ** 4)
# Initialize generator and discriminator
G_AB = GeneratorResNet(input_shape, args.n_residual_blocks)
G_BA = GeneratorResNet(input_shape, args.n_residual_blocks)
D_A = Discriminator(args.channels)
D_B = Discriminator(args.channels)
if args.epoch != 0:
# Load pretrained models
G_AB.load_state_dict(torch.load("saved_models/%s/G_AB_%d.pth" % (args.dataset_name, args.epoch)))
G_BA.load_state_dict(torch.load("saved_models/%s/G_BA_%d.pth" % (args.dataset_name, args.epoch)))
D_A.load_state_dict(torch.load("saved_models/%s/D_A_%d.pth" % (args.dataset_name, args.epoch)))
D_B.load_state_dict(torch.load("saved_models/%s/D_B_%d.pth" % (args.dataset_name, args.epoch)))
else:
# Initialize weights
G_AB.apply(weights_init_normal)
G_BA.apply(weights_init_normal)
D_A.apply(weights_init_normal)
D_B.apply(weights_init_normal)
# Optimizers
optimizer_G = torch.optim.Adam(
itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=args.lr, betas=(args.beta1, args.beta2)
)
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=args.lr, betas=(args.beta1, args.beta2))
# Learning rate update schedulers
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(
optimizer_G, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_A, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(
optimizer_D_B, lr_lambda=LambdaLR(args.num_epochs, args.epoch, args.decay_epoch).step
)
# Buffers of previously generated samples
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Image transformations
transform = Compose([
Resize(int(args.image_size * 1.12), Image.BICUBIC),
RandomCrop((args.image_size, args.image_size)),
RandomHorizontalFlip(),
ToTensor(),
Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
])
def transforms(examples):
examples["A"] = [transform(image.convert("RGB")) for image in examples["imageA"]]
examples["B"] = [transform(image.convert("RGB")) for image in examples["imageB"]]
del examples["imageA"]
del examples["imageB"]
return examples
dataset = load_dataset(args.dataset_name)
transformed_dataset = dataset.with_transform(transforms)
splits = transformed_dataset['train'].train_test_split(test_size=0.1)
train_ds = splits['train']
val_ds = splits['test']
dataloader = DataLoader(train_ds, shuffle=True, batch_size=args.batch_size, num_workers=args.num_workers)
val_dataloader = DataLoader(val_ds, batch_size=5, shuffle=True, num_workers=1)
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
batch = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = batch["A"]
fake_B = G_AB(real_A)
real_B = batch["B"]
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A = make_grid(real_A, nrow=5, normalize=True)
real_B = make_grid(real_B, nrow=5, normalize=True)
fake_A = make_grid(fake_A, nrow=5, normalize=True)
fake_B = make_grid(fake_B, nrow=5, normalize=True)
# Arange images along y-axis
image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1)
save_image(image_grid, "images/%s/%s.png" % (args.dataset_name, batches_done), normalize=False)
G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader = accelerator.prepare(G_AB, G_BA, D_A, D_B, optimizer_G, optimizer_D_A, optimizer_D_B, dataloader, val_dataloader)
# ----------
# Training
# ----------
prev_time = time.time()
for epoch in range(args.epoch, args.num_epochs):
for i, batch in enumerate(dataloader):
# Set model input
real_A = batch["A"]
real_B = batch["B"]
# Adversarial ground truths
valid = torch.ones((real_A.size(0), *output_shape), device=accelerator.device)
fake = torch.zeros((real_A.size(0), *output_shape), device=accelerator.device)
# ------------------
# Train Generators
# ------------------
G_AB.train()
G_BA.train()
optimizer_G.zero_grad()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Total loss
loss_G = loss_GAN + args.lambda_cyc * loss_cycle + args.lambda_id * loss_identity
accelerator.backward(loss_G)
optimizer_G.step()
# -----------------------
# Train Discriminator A
# -----------------------
optimizer_D_A.zero_grad()
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
accelerator.backward(loss_D_A)
optimizer_D_A.step()
# -----------------------
# Train Discriminator B
# -----------------------
optimizer_D_B.zero_grad()
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake) / 2
accelerator.backward(loss_D_B)
optimizer_D_B.step()
loss_D = (loss_D_A + loss_D_B) / 2
# --------------
# Log Progress
# --------------
# Determine approximate time left
batches_done = epoch * len(dataloader) + i
batches_left = args.num_epochs * len(dataloader) - batches_done
time_left = datetime.timedelta(seconds=batches_left * (time.time() - prev_time))
prev_time = time.time()
# Print log
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f] ETA: %s"
% (
epoch,
args.num_epochs,
i,
len(dataloader),
loss_D.item(),
loss_G.item(),
loss_GAN.item(),
loss_cycle.item(),
loss_identity.item(),
time_left,
)
)
# If at sample interval save image
if batches_done % args.sample_interval == 0:
sample_images(batches_done)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
if args.checkpoint_interval != -1 and epoch % args.checkpoint_interval == 0:
# Save model checkpoints
torch.save(G_AB.state_dict(), "saved_models/%s/G_AB_%d.pth" % (args.dataset_name, epoch))
torch.save(G_BA.state_dict(), "saved_models/%s/G_BA_%d.pth" % (args.dataset_name, epoch))
torch.save(D_A.state_dict(), "saved_models/%s/D_A_%d.pth" % (args.dataset_name, epoch))
torch.save(D_B.state_dict(), "saved_models/%s/D_B_%d.pth" % (args.dataset_name, epoch))
# Optionally push to hub
if args.push_to_hub:
save_directory = args.pytorch_dump_folder_path
if not save_directory.exists():
save_directory.mkdir(parents=True)
G_AB.push_to_hub(
repo_path_or_name=save_directory / args.model_name,
organization=args.organization_name,
)
def main():
args = parse_args()
print(args)
# Make directory for saving generated images
os.makedirs("images", exist_ok=True)
training_function({}, args)
if __name__ == "__main__":
main() |