File size: 9,778 Bytes
3bb4876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os

import datasets, transformers
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, set_seed
from transformers.optimization import get_scheduler
from datasets import load_dataset, DownloadConfig

import torch
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim import AdamW

import logging
import wandb
from huggingface_hub import Repository, create_branch
from accelerate import Accelerator
from argparse import Namespace


# Set the API token as an environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"


def save_checkpoint_state():

    dir_name = "./torch_checkpoint"
    os.makedirs(dir_name, exist_ok=True)

    checkpoint = {
        "lr_scheduler": lr_scheduler.state_dict(),
        "completed_steps": completed_steps,
        "run_name": run_name,
        "optimizer": optimizer.state_dict(),
        "run_id": wandb_id
    }
    torch.save(checkpoint, f"torch_checkpoint/latest_checkpoint.pth")


class ConstantLengthDataset(IterableDataset):

    def __init__(
        self,
        tokenizer,
        dataset,
        seq_length=1024,
        num_of_sequences=1024,
        chars_per_token=3.6,
    ):
        self.tokenizer = tokenizer
        self.concat_token_id = tokenizer.eos_token_id
        self.dataset = dataset
        self.seq_length = seq_length
        self.input_characters = seq_length * chars_per_token * num_of_sequences

    def __iter__(self):
        iterator = iter(self.dataset)
        more_examples = True
        while more_examples:
            buffer, buffer_len = [], 0
            while True:
                if buffer_len >= self.input_characters:
                    m = f"Buffer full: {buffer_len}>={self.input_characters:.0f}"
                    # print(m)
                    break
                try:
                    m = f"Fill buffer: {buffer_len}<{self.input_characters:.0f}"
                    # print(m)
                    buffer.append(next(iterator)["content"])
                    buffer_len += len(buffer[-1])
                except StopIteration:
                    # iterator = iter(self.dataset)
                    more_examples = False
                    break

            all_token_ids = []
            tokenized_inputs = self.tokenizer(buffer, truncation=False)
            for tokenized_input in tokenized_inputs["input_ids"]:
                all_token_ids.extend(tokenized_input + [self.concat_token_id])

            for i in range(0, len(all_token_ids), self.seq_length):
                input_ids = all_token_ids[i : i + self.seq_length]
                if len(input_ids) == self.seq_length:
                    yield torch.tensor(input_ids)


def setup_logging(project_name):
    logger = logging.getLogger(__name__)

    dir_name = "./log"
    if not os.path.exists(dir_name):
        os.makedirs(dir_name)
        print(f"Directory '{dir_name}' was created.")
    else:
        print(f"Directory '{dir_name}' already exists.")

    # setting up log directory
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
        handlers=[
            logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
            logging.StreamHandler(),
        ],
    )
    if accelerator.is_main_process:  # We only want to set up logging once
        wandb.init(project=project_name, config=args, dir="./../")
        run_name = wandb.run.name
        wandb_id = wandb.run.id
        tb_writer = SummaryWriter()
        tb_writer.add_hparams(vars(args), {"0": 0})
        logger.setLevel(logging.INFO)
        datasets.utils.logging.set_verbosity_debug()
        transformers.utils.logging.set_verbosity_info()
    else:
        tb_writer = None
        run_name = ""
        wandb_id = ""
        logger.setLevel(logging.ERROR)
        datasets.utils.logging.set_verbosity_error()
        transformers.utils.logging.set_verbosity_error()
    return logger, tb_writer, run_name, wandb_id


def create_dataloaders(dataset_name):
    train_data = load_dataset(dataset_name + "-train", split="train", streaming=True)
    train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
    valid_data = load_dataset(dataset_name + "-valid", split="validation", streaming=True)

    train_dataset = ConstantLengthDataset(tokenizer, train_data, seq_length=args.seq_length)
    valid_dataset = ConstantLengthDataset(tokenizer, valid_data, seq_length=args.seq_length)

    train_dataloader = DataLoader(train_dataset, batch_size=args.train_batch_size, num_workers=96)
    eval_dataloader = DataLoader(valid_dataset, batch_size=args.valid_batch_size, num_workers=1)
    return train_dataloader, eval_dataloader


def log_metrics(step, metrics):
    logger.info(f"Step {step}: {metrics}")
    if accelerator.is_main_process:
        wandb.log(metrics)
        [tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]


def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
    params_with_wd, params_without_wd = [], []
    for n, p in model.named_parameters():
        if any(nd in n for nd in no_decay):
            params_without_wd.append(p)
        else:
            params_with_wd.append(p)
    return [
        {"params": params_with_wd, "weight_decay": args.weight_decay},
        {"params": params_without_wd, "weight_decay": 0.0},
    ]


def evaluate():
    model.eval()
    losses = []
    for step, batch in enumerate(eval_dataloader):
        with torch.no_grad():
            outputs = model(batch, labels=batch)
        loss = outputs.loss.repeat(args.valid_batch_size)
        losses.append(accelerator.gather(loss))
        if args.max_eval_steps > 0 and step >= args.max_eval_steps:
            break
    loss = torch.mean(torch.cat(losses))

    try:
        perplexity = torch.exp(loss)
    except OverflowError:
        perplexity = torch.tensor(float("inf"))

    return loss.item(), perplexity.item()


# Accelerator
accelerator = Accelerator(dispatch_batches=True)
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}

project_name = "shng2025/gptesla-small"
dataset_name = "shng2025/gptesla"

# GPTesla - 111M param setup in comment. Modification to make lighter training requirement needed
config = {
    "train_batch_size": 12,  # 12
    "valid_batch_size": 12,  # 12
    "weight_decay": 0.1,
    "shuffle_buffer": 1000,
    "learning_rate": 5e-4,  # 5e-4
    "lr_scheduler_type": "cosine",
    "num_warmup_steps": 700,  # 2000
    "gradient_accumulation_steps": 1,  # 1
    "max_train_steps": 150000,  # 150000
    "max_eval_steps": 10,
    "seq_length": 1024,
    "seed": 1,
    "save_checkpoint_steps": 15000,
}  # 15000

args = Namespace(**config, **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)

# Logging
logger, tb_writer, run_name, wandb_id = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)

# Load model and tokenizer
if accelerator.is_main_process:
    new_branch_name = run_name
    create_branch(project_name, repo_type="model", branch=new_branch_name)
    hf_repo = Repository("./", clone_from=project_name, revision=run_name)

model = AutoModelForCausalLM.from_pretrained("./")  # , gradient_checkpointing=True)
tokenizer = AutoTokenizer.from_pretrained("./")

# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)

# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
lr_scheduler = get_scheduler(
    name=args.lr_scheduler_type,
    optimizer=optimizer,
    num_warmup_steps=args.num_warmup_steps,
    num_training_steps=args.max_train_steps,
)


def get_lr():
    return optimizer.param_groups[0]["lr"]


# Prepare everything with our `accelerator` (order of args is not important)
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
    model, optimizer, train_dataloader, eval_dataloader
)


# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
    loss = model(batch, labels=batch).loss
    log_metrics(
        step,
        {
            "lr": get_lr(),
            "samples": step * samples_per_step,
            "steps": completed_steps,
            "loss/train": loss.item(),
        },
    )
    loss = loss / args.gradient_accumulation_steps
    accelerator.backward(loss)
    if step % args.gradient_accumulation_steps == 0:
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()
        completed_steps += 1
    if step % args.save_checkpoint_steps == 0:
        logger.info("Evaluating and saving model checkpoint")
        eval_loss, perplexity = evaluate()
        log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
        accelerator.wait_for_everyone()
        unwrapped_model = accelerator.unwrap_model(model)
        if accelerator.is_main_process:
            save_checkpoint_state()
            unwrapped_model.save_pretrained("./")
            hf_repo.push_to_hub(commit_message=f"step {step}")
        model.train()
    if completed_steps >= args.max_train_steps:
        break


# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate()
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
    unwrapped_model.save_pretrained("./")
    hf_repo.push_to_hub(commit_message="final model")