File size: 9,791 Bytes
a942953 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
import os
import datasets, transformers
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, set_seed
from transformers.optimization import get_scheduler
from datasets import load_dataset, DownloadConfig
import torch
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from torch.utils.tensorboard import SummaryWriter
from torch.optim import AdamW
import logging
import wandb
from huggingface_hub import Repository, create_branch
from accelerate import Accelerator
from argparse import Namespace
# Set the API token as an environment variable
os.environ["TOKENIZERS_PARALLELISM"] = "false"
def save_checkpoint_state():
dir_name = "./torch_checkpoint"
os.makedirs(dir_name, exist_ok=True)
checkpoint = {
"lr_scheduler": lr_scheduler.state_dict(),
"completed_steps": completed_steps,
"run_name": run_name,
"optimizer": optimizer
}
torch.save(checkpoint, f"torch_checkpoint/latest_checkpoint.pth")
class ConstantLengthDataset(IterableDataset):
def __init__(
self,
tokenizer,
dataset,
seq_length=1024,
num_of_sequences=1024,
chars_per_token=3.6,
):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.eos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.input_characters = seq_length * chars_per_token * num_of_sequences
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.input_characters:
m = f"Buffer full: {buffer_len}>={self.input_characters:.0f}"
# print(m)
break
try:
m = f"Fill buffer: {buffer_len}<{self.input_characters:.0f}"
# print(m)
buffer.append(next(iterator)["content"])
buffer_len += len(buffer[-1])
except StopIteration:
# iterator = iter(self.dataset)
more_examples = False
break
all_token_ids = []
tokenized_inputs = self.tokenizer(buffer, truncation=False)
for tokenized_input in tokenized_inputs["input_ids"]:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
yield torch.tensor(input_ids)
def setup_logging(project_name):
logger = logging.getLogger(__name__)
dir_name = "./log"
if not os.path.exists(dir_name):
os.makedirs(dir_name)
print(f"Directory '{dir_name}' was created.")
else:
print(f"Directory '{dir_name}' already exists.")
# setting up log directory
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
handlers=[
logging.FileHandler(f"log/debug_{accelerator.process_index}.log"),
logging.StreamHandler(),
],
)
if accelerator.is_main_process: # We only want to set up logging once
wandb.init(project=project_name, config=args, dir="./../")
run_name = wandb.run.name
tb_writer = SummaryWriter()
tb_writer.add_hparams(vars(args), {"0": 0})
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity_debug()
transformers.utils.logging.set_verbosity_info()
else:
tb_writer = None
run_name = ""
logger.setLevel(logging.ERROR)
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
return logger, tb_writer, run_name
def create_dataloaders(dataset_name):
train_data = load_dataset(dataset_name + "-train", split="train", streaming=True)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
valid_data = load_dataset(
dataset_name + "-valid", split="validation", streaming=True
)
train_dataset = ConstantLengthDataset(
tokenizer, train_data, seq_length=args.seq_length
)
valid_dataset = ConstantLengthDataset(
tokenizer, valid_data, seq_length=args.seq_length
)
train_dataloader = DataLoader(
train_dataset, batch_size=args.train_batch_size, num_workers=96
)
eval_dataloader = DataLoader(
valid_dataset, batch_size=args.valid_batch_size, num_workers=1
)
return train_dataloader, eval_dataloader
def log_metrics(step, metrics):
logger.info(f"Step {step}: {metrics}")
if accelerator.is_main_process:
wandb.log(metrics)
[tb_writer.add_scalar(k, v, step) for k, v in metrics.items()]
def get_grouped_params(model, no_decay=["bias", "LayerNorm.weight"]):
params_with_wd, params_without_wd = [], []
for n, p in model.named_parameters():
if any(nd in n for nd in no_decay):
params_without_wd.append(p)
else:
params_with_wd.append(p)
return [
{"params": params_with_wd, "weight_decay": args.weight_decay},
{"params": params_without_wd, "weight_decay": 0.0},
]
def evaluate():
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.valid_batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
loss = torch.mean(torch.cat(losses))
try:
perplexity = torch.exp(loss)
except OverflowError:
perplexity = torch.tensor(float("inf"))
return loss.item(), perplexity.item()
# Accelerator
accelerator = Accelerator(dispatch_batches=True)
acc_state = {str(k): str(v) for k, v in accelerator.state.__dict__.items()}
project_name = "shng2025/gptesla-small"
dataset_name = "shng2025/gptesla"
# GPTesla - 111M param setup in comment. Modification to make lighter training requirement needed
config = {
"train_batch_size": 12, # 12
"valid_batch_size": 12, # 12
"weight_decay": 0.1,
"shuffle_buffer": 1000,
"learning_rate": 5e-4, # 5e-4
"lr_scheduler_type": "cosine",
"num_warmup_steps": 700, # 2000
"gradient_accumulation_steps": 1, # 1
"max_train_steps": 50000, # 150000
"max_eval_steps": 10,
"seq_length": 1024,
"seed": 1,
"save_checkpoint_steps": 50,
} # 15000
args = Namespace(**config, **acc_state)
samples_per_step = accelerator.state.num_processes * args.train_batch_size
set_seed(args.seed)
# Logging
logger, tb_writer, run_name = setup_logging(project_name.split("/")[1])
logger.info(accelerator.state)
# Load model and tokenizer
if accelerator.is_main_process:
new_branch_name = run_name
create_branch(project_name, repo_type="model", branch=new_branch_name)
hf_repo = Repository("./", clone_from=project_name, revision=run_name)
model = AutoModelForCausalLM.from_pretrained("./") # , gradient_checkpointing=True)
tokenizer = AutoTokenizer.from_pretrained("./")
# Load dataset and dataloader
train_dataloader, eval_dataloader = create_dataloaders(dataset_name)
# Prepare the optimizer and learning rate scheduler
optimizer = AdamW(get_grouped_params(model), lr=args.learning_rate)
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps,
num_training_steps=args.max_train_steps,
)
def get_lr():
return optimizer.param_groups[0]["lr"]
# Prepare everything with our `accelerator` (order of args is not important)
model, optimizer, train_dataloader, eval_dataloader = accelerator.prepare(
model, optimizer, train_dataloader, eval_dataloader
)
# Train model
model.train()
completed_steps = 0
for step, batch in enumerate(train_dataloader, start=1):
loss = model(batch, labels=batch).loss
log_metrics(
step,
{
"lr": get_lr(),
"samples": step * samples_per_step,
"steps": completed_steps,
"loss/train": loss.item(),
},
)
loss = loss / args.gradient_accumulation_steps
accelerator.backward(loss)
if step % args.gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
completed_steps += 1
if step % args.save_checkpoint_steps == 0:
logger.info("Evaluating and saving model checkpoint")
eval_loss, perplexity = evaluate()
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
save_checkpoint_state()
unwrapped_model.save_pretrained("./")
accelerator.save_state(output_dir="my_checkpoint")
hf_repo.push_to_hub(commit_message=f"step {step}")
model.train()
if completed_steps >= args.max_train_steps:
break
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate()
log_metrics(step, {"loss/eval": eval_loss, "perplexity": perplexity})
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
if accelerator.is_main_process:
unwrapped_model.save_pretrained("./")
hf_repo.push_to_hub(commit_message="final model")
|