Add exported onnx model 'model_O4.onnx'
#29
by
tomaarsen
HF staff
- opened
Hello!
This pull request has been automatically generated from the export_optimized_onnx_model
function from the Sentence Transformers library.
Config
OptimizationConfig(
optimization_level=2,
optimize_for_gpu=True,
fp16=True,
optimize_with_onnxruntime_only=None,
enable_transformers_specific_optimizations=True,
disable_gelu=None,
disable_gelu_fusion=False,
disable_layer_norm=None,
disable_layer_norm_fusion=False,
disable_attention=None,
disable_attention_fusion=False,
disable_skip_layer_norm=None,
disable_skip_layer_norm_fusion=False,
disable_bias_skip_layer_norm=None,
disable_bias_skip_layer_norm_fusion=False,
disable_bias_gelu=None,
disable_bias_gelu_fusion=False,
disable_embed_layer_norm=True,
disable_embed_layer_norm_fusion=True,
enable_gelu_approximation=True,
use_mask_index=False,
no_attention_mask=False,
disable_shape_inference=False,
use_multi_head_attention=False,
enable_gemm_fast_gelu_fusion=False,
use_raw_attention_mask=False,
disable_group_norm_fusion=True,
disable_packed_kv=True,
disable_rotary_embeddings=False
)
Tip:
Consider testing this pull request before merging by loading the model from this PR with the revision
argument:
from sentence_transformers import SentenceTransformer
# TODO: Fill in the PR number
pr_number = 2
model = SentenceTransformer(
"shibing624/text2vec-base-chinese",
revision=f"refs/pr/{pr_number}",
backend="onnx",
model_kwargs={"file_name": "model_O4.onnx"},
)
# Verify that everything works as expected
embeddings = model.encode(["The weather is lovely today.", "It's so sunny outside!", "He drove to the stadium."])
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities)
效果损失太大,emb模型不建议量化。Quantization is not recommended for embedding models as it results in significant performance degradation.
shibing624
changed pull request status to
closed
shibing624
changed pull request status to
open
shibing624
changed pull request status to
merged