File size: 5,215 Bytes
4e98941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
"""
Implementation borrowed from transformers package and extended to support multiple prediction heads:

https://github.com/huggingface/transformers/blob/master/src/transformers/models/bert/modeling_bert.py
"""

import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss

import transformers
from transformers import BertTokenizer
from transformers import models
from transformers.modeling_outputs import SequenceClassifierOutput

from transformers.models.bert.configuration_bert import BertConfig
from transformers.models.bert.modeling_bert import (
    BertPreTrainedModel,
    BERT_INPUTS_DOCSTRING,
    _TOKENIZER_FOR_DOC,
    _CHECKPOINT_FOR_DOC,
    _CONFIG_FOR_DOC,
    BertModel,
)

from transformers.file_utils import (
    add_code_sample_docstrings,
    add_start_docstrings_to_model_forward,
)


class BertForSequenceClassification(BertPreTrainedModel):
    def __init__(self, config, **kwargs):
        super().__init__(transformers.PretrainedConfig())
        self.num_labels = kwargs.get("task_labels_map", {})
        self.config = config

        self.bert = BertModel(config)
        classifier_dropout = (
            config.classifier_dropout
            if config.classifier_dropout is not None
            else config.hidden_dropout_prob
        )
        self.dropout = nn.Dropout(classifier_dropout)
        ## add task specific output heads
        self.classifier1 = nn.Linear(
            config.hidden_size, list(self.num_labels.values())[0]
        )
        self.classifier2 = nn.Linear(
            config.hidden_size, list(self.num_labels.values())[1]
        )

        self.init_weights()

    @add_start_docstrings_to_model_forward(
        BERT_INPUTS_DOCSTRING.format("batch_size, sequence_length")
    )
    @add_code_sample_docstrings(
        tokenizer_class=_TOKENIZER_FOR_DOC,
        checkpoint=_CHECKPOINT_FOR_DOC,
        output_type=SequenceClassifierOutput,
        config_class=_CONFIG_FOR_DOC,
    )
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        output_attentions=None,
        output_hidden_states=None,
        return_dict=None,
        task_name=None,
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
            Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
            config.num_labels - 1]`. If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
        """
        return_dict = (
            return_dict if return_dict is not None else self.config.use_return_dict
        )

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )

        pooled_output = outputs[1]

        pooled_output = self.dropout(pooled_output)
        logits = None
        if task_name == list(self.num_labels.keys())[0]:
            logits = self.classifier1(pooled_output)
        elif task_name == list(self.num_labels.keys())[1]:
            logits = self.classifier2(pooled_output)

        loss = None
        if labels is not None:
            if self.config.problem_type is None:
                if self.num_labels[task_name] == 1:
                    self.config.problem_type = "regression"
                elif self.num_labels[task_name] > 1 and (
                    labels.dtype == torch.long or labels.dtype == torch.int
                ):
                    self.config.problem_type = "single_label_classification"
                else:
                    self.config.problem_type = "multi_label_classification"

            if self.config.problem_type == "regression":
                loss_fct = MSELoss()
                if self.num_labels[task_name] == 1:
                    loss = loss_fct(logits.squeeze(), labels.squeeze())
                else:
                    loss = loss_fct(logits, labels)
            elif self.config.problem_type == "single_label_classification":
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(
                    logits.view(-1, self.num_labels[task_name]), labels.view(-1)
                )
            elif self.config.problem_type == "multi_label_classification":
                loss_fct = BCEWithLogitsLoss()
                loss = loss_fct(logits, labels)
        if not return_dict:
            output = (logits,) + outputs[2:]
            return ((loss,) + output) if loss is not None else output

        return SequenceClassifierOutput(
            loss=loss,
            logits=logits,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )