File size: 2,042 Bytes
0a315b9 73543e0 0a315b9 73543e0 df18db2 73543e0 be852bc 7f93b46 ea76f5d e2ea95c 1596872 2ac4935 620896f df18db2 73543e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: sevvalkapcak/newModel
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# sevvalkapcak/newModel
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0183
- Validation Loss: 0.7842
- Train Accuracy: 0.9005
- Epoch: 8
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.0133 | 0.6573 | 0.901 | 0 |
| 0.0135 | 0.7314 | 0.9065 | 1 |
| 0.0104 | 0.6544 | 0.913 | 2 |
| 0.0148 | 0.7763 | 0.9035 | 3 |
| 0.0171 | 0.7110 | 0.9055 | 4 |
| 0.0121 | 0.7075 | 0.9015 | 5 |
| 0.0126 | 0.7461 | 0.8945 | 6 |
| 0.0212 | 0.7539 | 0.9035 | 7 |
| 0.0183 | 0.7842 | 0.9005 | 8 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1
|