File size: 3,724 Bytes
0a315b9
 
73543e0
 
 
 
 
 
0a315b9
73543e0
 
 
 
 
 
 
 
3acd027
 
 
 
73543e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
be852bc
7f93b46
ea76f5d
e2ea95c
1596872
2ac4935
620896f
df18db2
a86d2a2
b2b1982
e314936
2a3d4eb
2dedac5
e686530
796719c
3770a80
6535799
84d0592
b84b522
4a6c5b7
6814ca6
e0d8f8c
9602b63
e1dee8b
f251bb9
f9dcd61
9d07f08
3e583c9
d156ec3
72dc11c
9767e90
57b2194
2a3b0ee
391e066
be0e3cd
43df3e9
3acd027
73543e0
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: sevvalkapcak/newModel
  results: []
---

<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->

# sevvalkapcak/newModel

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0146
- Validation Loss: 0.7180
- Train Accuracy: 0.909
- Epoch: 37

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.0133     | 0.6573          | 0.901          | 0     |
| 0.0135     | 0.7314          | 0.9065         | 1     |
| 0.0104     | 0.6544          | 0.913          | 2     |
| 0.0148     | 0.7763          | 0.9035         | 3     |
| 0.0171     | 0.7110          | 0.9055         | 4     |
| 0.0121     | 0.7075          | 0.9015         | 5     |
| 0.0126     | 0.7461          | 0.8945         | 6     |
| 0.0212     | 0.7539          | 0.9035         | 7     |
| 0.0183     | 0.7842          | 0.9005         | 8     |
| 0.0192     | 0.7431          | 0.901          | 9     |
| 0.0224     | 0.6014          | 0.9065         | 10    |
| 0.0168     | 0.6000          | 0.914          | 11    |
| 0.0133     | 0.6241          | 0.9125         | 12    |
| 0.0097     | 0.6747          | 0.9075         | 13    |
| 0.0122     | 0.7352          | 0.908          | 14    |
| 0.0123     | 0.8061          | 0.905          | 15    |
| 0.0139     | 0.7254          | 0.8985         | 16    |
| 0.0120     | 0.6856          | 0.903          | 17    |
| 0.0175     | 0.6727          | 0.905          | 18    |
| 0.0155     | 0.6912          | 0.9055         | 19    |
| 0.0192     | 0.7535          | 0.903          | 20    |
| 0.0206     | 0.7428          | 0.8995         | 21    |
| 0.0108     | 0.7883          | 0.8965         | 22    |
| 0.0159     | 0.7443          | 0.8885         | 23    |
| 0.0238     | 0.7381          | 0.8935         | 24    |
| 0.0167     | 0.7888          | 0.901          | 25    |
| 0.0207     | 0.7062          | 0.899          | 26    |
| 0.0148     | 0.7670          | 0.9065         | 27    |
| 0.0177     | 0.6694          | 0.8925         | 28    |
| 0.0157     | 0.7312          | 0.9045         | 29    |
| 0.0145     | 0.6551          | 0.905          | 30    |
| 0.0188     | 0.7582          | 0.906          | 31    |
| 0.0136     | 0.7531          | 0.9085         | 32    |
| 0.0119     | 0.7965          | 0.8905         | 33    |
| 0.0069     | 0.8430          | 0.901          | 34    |
| 0.0100     | 0.7795          | 0.8975         | 35    |
| 0.0100     | 0.9567          | 0.889          | 36    |
| 0.0146     | 0.7180          | 0.909          | 37    |


### Framework versions

- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1