File size: 3,724 Bytes
0a315b9 73543e0 0a315b9 73543e0 3acd027 73543e0 be852bc 7f93b46 ea76f5d e2ea95c 1596872 2ac4935 620896f df18db2 a86d2a2 b2b1982 e314936 2a3d4eb 2dedac5 e686530 796719c 3770a80 6535799 84d0592 b84b522 4a6c5b7 6814ca6 e0d8f8c 9602b63 e1dee8b f251bb9 f9dcd61 9d07f08 3e583c9 d156ec3 72dc11c 9767e90 57b2194 2a3b0ee 391e066 be0e3cd 43df3e9 3acd027 73543e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_keras_callback
model-index:
- name: sevvalkapcak/newModel
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# sevvalkapcak/newModel
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 0.0146
- Validation Loss: 0.7180
- Train Accuracy: 0.909
- Epoch: 37
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 0.0133 | 0.6573 | 0.901 | 0 |
| 0.0135 | 0.7314 | 0.9065 | 1 |
| 0.0104 | 0.6544 | 0.913 | 2 |
| 0.0148 | 0.7763 | 0.9035 | 3 |
| 0.0171 | 0.7110 | 0.9055 | 4 |
| 0.0121 | 0.7075 | 0.9015 | 5 |
| 0.0126 | 0.7461 | 0.8945 | 6 |
| 0.0212 | 0.7539 | 0.9035 | 7 |
| 0.0183 | 0.7842 | 0.9005 | 8 |
| 0.0192 | 0.7431 | 0.901 | 9 |
| 0.0224 | 0.6014 | 0.9065 | 10 |
| 0.0168 | 0.6000 | 0.914 | 11 |
| 0.0133 | 0.6241 | 0.9125 | 12 |
| 0.0097 | 0.6747 | 0.9075 | 13 |
| 0.0122 | 0.7352 | 0.908 | 14 |
| 0.0123 | 0.8061 | 0.905 | 15 |
| 0.0139 | 0.7254 | 0.8985 | 16 |
| 0.0120 | 0.6856 | 0.903 | 17 |
| 0.0175 | 0.6727 | 0.905 | 18 |
| 0.0155 | 0.6912 | 0.9055 | 19 |
| 0.0192 | 0.7535 | 0.903 | 20 |
| 0.0206 | 0.7428 | 0.8995 | 21 |
| 0.0108 | 0.7883 | 0.8965 | 22 |
| 0.0159 | 0.7443 | 0.8885 | 23 |
| 0.0238 | 0.7381 | 0.8935 | 24 |
| 0.0167 | 0.7888 | 0.901 | 25 |
| 0.0207 | 0.7062 | 0.899 | 26 |
| 0.0148 | 0.7670 | 0.9065 | 27 |
| 0.0177 | 0.6694 | 0.8925 | 28 |
| 0.0157 | 0.7312 | 0.9045 | 29 |
| 0.0145 | 0.6551 | 0.905 | 30 |
| 0.0188 | 0.7582 | 0.906 | 31 |
| 0.0136 | 0.7531 | 0.9085 | 32 |
| 0.0119 | 0.7965 | 0.8905 | 33 |
| 0.0069 | 0.8430 | 0.901 | 34 |
| 0.0100 | 0.7795 | 0.8975 | 35 |
| 0.0100 | 0.9567 | 0.889 | 36 |
| 0.0146 | 0.7180 | 0.909 | 37 |
### Framework versions
- Transformers 4.35.2
- TensorFlow 2.15.0
- Datasets 2.16.1
- Tokenizers 0.15.1
|