File size: 6,529 Bytes
b37310d
 
cd98338
 
b37310d
cd98338
 
 
 
 
 
 
 
 
 
 
 
b37310d
6d0086b
cd98338
 
 
 
 
 
 
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd98338
4ae7957
b37310d
 
 
 
 
 
 
 
c6072f2
b37310d
2a1d640
 
 
 
 
 
 
 
 
 
 
c7e36dc
 
fe74962
 
b37310d
d5730da
 
 
 
 
 
 
 
 
 
 
 
 
b37310d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e1e0bd
aca1f98
c6072f2
aca1f98
 
 
c6072f2
cd98338
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
---
language:
- en
license: llama2
library_name: transformers
tags:
- mistral
- merge
datasets:
- stingning/ultrachat
- garage-bAInd/Open-Platypus
- Open-Orca/OpenOrca
- TIGER-Lab/MathInstruct
- OpenAssistant/oasst_top1_2023-08-25
- teknium/openhermes
- meta-math/MetaMathQA
- Open-Orca/SlimOrca
pipeline_tag: text-generation
base_model:
- Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
- ehartford/dolphin-2.1-mistral-7b
- Open-Orca/Mistral-7B-OpenOrca
- bhenrym14/mistral-7b-platypus-fp16
- ehartford/samantha-1.2-mistral-7b
- iteknium/CollectiveCognition-v1.1-Mistral-7B
- HuggingFaceH4/zephyr-7b-alpha
model-index:
- name: sethuiyer/SynthIQ-7b
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.87
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 85.82
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.75
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 57
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.69
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.06
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
      name: Open LLM Leaderboard
---

<p align="center">
  <img src="https://codeberg.org/aninokuma/DeydooAssistant/raw/branch/main/logo.webp" height="256px" alt="SynthIQ">
</p>

# SynthIQ

This is SynthIQ, rated **92.23/100** by GPT-4 across varied complex prompts. I used [mergekit](https://github.com/cg123/mergekit) to merge models.

| Benchmark Name   | Score |
| ---------------- | ----- |
| ARC              | 65.87 |
| HellaSwag        | 85.82 |
| MMLU             | 64.75 |
| TruthfulQA       | 57.00 |
| Winogrande       | 78.69 |
| GSM8K            | 64.06 |
| AGIEval          | 42.67 |
| GPT4All          | 73.71 |
| Bigbench         | 44.59 |


## Update - 19/01/2024
Tested to work well with autogen and CrewAI

GGUF Files

[Q4_K_M](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q4_K_M.gguf) - medium, balanced quality - recommended

[Q_6_K](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q6_K.gguf) - very large, extremely low quality loss

[Q8_0](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q8.gguf) - very large, extremely low quality loss - not recommended

**Important Update**: SynthIQ is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/synthiq``` in your 
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on 
a Google Colab backend.


# Yaml Config

```yaml

slices:
  - sources:
      - model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
        layer_range: [0, 32]
      - model: uukuguy/speechless-mistral-six-in-one-7b
        layer_range: [0, 32]

merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1

parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5 # fallback for rest of tensors
tokenizer_source: union

dtype: bfloat16

```

<!-- prompt-template start -->
## Prompt template: ChatML

```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant

```

<!-- prompt-template end -->


License is LLama2 license as uukuguy/speechless-mistral-six-in-one-7b is llama2 license.

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b)

# [Nous Benchmark Evalation Results](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard)
Detailed results can be found [here](https://gist.github.com/sethuiyer/f47dee388a4e95d46181c98d37d66a58)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |69.37|
|AI2 Reasoning Challenge (25-Shot)|65.87|
|HellaSwag (10-Shot)              |85.82|
|MMLU (5-Shot)                    |64.75|
|TruthfulQA (0-shot)              |57.00|
|Winogrande (5-shot)              |78.69|
|GSM8k (5-shot)                   |64.06|