File size: 6,529 Bytes
b37310d cd98338 b37310d cd98338 b37310d 6d0086b cd98338 4ae7957 cd98338 4ae7957 cd98338 4ae7957 cd98338 4ae7957 cd98338 4ae7957 cd98338 4ae7957 cd98338 4ae7957 b37310d c6072f2 b37310d 2a1d640 c7e36dc fe74962 b37310d d5730da b37310d 7e1e0bd aca1f98 c6072f2 aca1f98 c6072f2 cd98338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
---
language:
- en
license: llama2
library_name: transformers
tags:
- mistral
- merge
datasets:
- stingning/ultrachat
- garage-bAInd/Open-Platypus
- Open-Orca/OpenOrca
- TIGER-Lab/MathInstruct
- OpenAssistant/oasst_top1_2023-08-25
- teknium/openhermes
- meta-math/MetaMathQA
- Open-Orca/SlimOrca
pipeline_tag: text-generation
base_model:
- Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
- ehartford/dolphin-2.1-mistral-7b
- Open-Orca/Mistral-7B-OpenOrca
- bhenrym14/mistral-7b-platypus-fp16
- ehartford/samantha-1.2-mistral-7b
- iteknium/CollectiveCognition-v1.1-Mistral-7B
- HuggingFaceH4/zephyr-7b-alpha
model-index:
- name: sethuiyer/SynthIQ-7b
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.87
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.82
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.75
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 57
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 78.69
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.06
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=sethuiyer/SynthIQ-7b
name: Open LLM Leaderboard
---
<p align="center">
<img src="https://codeberg.org/aninokuma/DeydooAssistant/raw/branch/main/logo.webp" height="256px" alt="SynthIQ">
</p>
# SynthIQ
This is SynthIQ, rated **92.23/100** by GPT-4 across varied complex prompts. I used [mergekit](https://github.com/cg123/mergekit) to merge models.
| Benchmark Name | Score |
| ---------------- | ----- |
| ARC | 65.87 |
| HellaSwag | 85.82 |
| MMLU | 64.75 |
| TruthfulQA | 57.00 |
| Winogrande | 78.69 |
| GSM8K | 64.06 |
| AGIEval | 42.67 |
| GPT4All | 73.71 |
| Bigbench | 44.59 |
## Update - 19/01/2024
Tested to work well with autogen and CrewAI
GGUF Files
[Q4_K_M](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q4_K_M.gguf) - medium, balanced quality - recommended
[Q_6_K](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q6_K.gguf) - very large, extremely low quality loss
[Q8_0](https://huggingface.co/sethuiyer/SynthIQ_GGUF/blob/main/synthiq.Q8.gguf) - very large, extremely low quality loss - not recommended
**Important Update**: SynthIQ is now available on Ollama. You can use it by running the command ```ollama run stuehieyr/synthiq``` in your
terminal. If you have limited computing resources, check out this [video](https://www.youtube.com/watch?v=Qa1h7ygwQq8) to learn how to run it on
a Google Colab backend.
# Yaml Config
```yaml
slices:
- sources:
- model: Weyaxi/OpenHermes-2.5-neural-chat-v3-3-openchat-3.5-1210-Slerp
layer_range: [0, 32]
- model: uukuguy/speechless-mistral-six-in-one-7b
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-v0.1
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5 # fallback for rest of tensors
tokenizer_source: union
dtype: bfloat16
```
<!-- prompt-template start -->
## Prompt template: ChatML
```
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```
<!-- prompt-template end -->
License is LLama2 license as uukuguy/speechless-mistral-six-in-one-7b is llama2 license.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b)
# [Nous Benchmark Evalation Results](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard)
Detailed results can be found [here](https://gist.github.com/sethuiyer/f47dee388a4e95d46181c98d37d66a58)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sethuiyer__SynthIQ-7b)
| Metric |Value|
|---------------------------------|----:|
|Avg. |69.37|
|AI2 Reasoning Challenge (25-Shot)|65.87|
|HellaSwag (10-Shot) |85.82|
|MMLU (5-Shot) |64.75|
|TruthfulQA (0-shot) |57.00|
|Winogrande (5-shot) |78.69|
|GSM8k (5-shot) |64.06|
|