Model Description

Uses

  • use to sentimental analysis task

How to Get Started with the Model

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("seongyeon1/klue-base-finetuned-nsmc")
model = AutoModelForSequenceClassification.from_pretrained("seongyeon1/klue-base-finetuned-nsmc")
from transformers import pipeline

pipe = pipeline("text-classification", model="seongyeon1/klue-base-finetuned-nsmc")
pipe("진짜 별로더라") # [{'label': 'LABEL_0', 'score': 0.999700665473938}]
pipe("굿굿")        # [{'label': 'LABEL_1', 'score': 0.9875587224960327}]

Training Details

Training Data

from datasets import load_dataset

dataset = load_dataset('nsmc')

Preprocessing

  • bert's default is 512, but it costs a lot of time.
    • maxlen = 55 image/png
def tokenize_function_with_max(examples, maxlen=maxlen):
    encodings = tokenizer(examples['document'],max_length=maxlen, truncation=True, padding='max_length')
    return encodings

Training Hyperparameters

  • learning rate=2e-5, weight decay=0.01, batch size=32, epochs=2

Metrics

  • accuracy
  • label ratio is about almost balanced

image/png

Result

{'eval_loss': 0.2575262784957886, 'eval_accuracy': 0.9041, 'eval_runtime': 163.2129, 'eval_samples_per_second': 306.348, 'eval_steps_per_second': 9.576, 'epoch': 2.0}

Downloads last month
6
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train seongyeon1/klue-base-finetuned-nsmc