SentenceTransformer based on BAAI/bge-m3
This is a sentence-transformers model finetuned from BAAI/bge-m3. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-m3
- Maximum Sequence Length: 1024 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("seongil-dn/bge-m3-kor-retrieval-451949-bs64-admin-50")
# Run inference
sentences = [
'어떤 안건으로 제2차 그린철강위원회 관련 자동차협의회가 개최되었을까?',
"제2차 그린철강위원회(6.18) 개최<br> 탄소중립 협의회 2차 회의 개최 경과 및 향후 일정 <br> <table><tbody><tr><td>시리즈</td><td>일정</td><td>협의회</td><td>주요 내용</td><td>구분</td></tr><tr><td> </td><td>6.2</td><td>정유</td><td>정유업계 탄소중립 기술개발 로드맵 추진방향 모색</td><td rowspan='2'>旣개최 </td></tr><tr><td> </td><td>6.15</td><td>석유화학</td><td> 석유화학 분야 2050 탄소중립을 위한 예타 R&D 기획·추진 현황</td></tr><tr><td> </td><td>6.18</td><td>철강</td><td>철강 분야 2050 감축시나리오 수립 동향, 탄소중립 R&D 로드맵 등</td><td>개최</td></tr><tr><td> </td><td>6.23</td><td>표준화</td><td>탄소중립 표준화 전략 추진현황 점검</td><td rowspan='11'>개최 예정 </td></tr><tr><td> </td><td>6월말</td><td>반도체 디스플레이 </td><td>반도체·디스플레이 탄소중립 R&D 로드맵 동향 및 탄소중립 방향성 논의</td></tr><tr><td> </td><td>6월말</td><td>섬유‧제지</td><td>섬유ㆍ제지산업 탄소중립 R&D전략 논의</td></tr><tr><td> </td><td>6월말</td><td>기계</td><td>기계산업 탄소중립 추진전략 논의(잠정)</td></tr><tr><td> </td><td>7월초</td><td>기술혁신</td><td>‘2050 탄소중립 R&D 전략’ 추진현황 논의</td></tr><tr><td> </td><td>7월초</td><td>자동차</td><td>자동차 2050 감축시나리오 수립 동향 및 탄소중립 로드맵 추진 현황</td></tr><tr><td> </td><td>7.1</td><td>조선</td><td>조선업 탄소중립 실현방안(잠정)</td></tr><tr><td> </td><td>7.2</td><td>바이오</td><td>협의체 운영방안 관련 주요 업계 간담회</td></tr><tr><td> </td><td>7.2</td><td>전기전자</td><td>전기전자 탄소중립 R&D 전략 논의 등 </td></tr><tr><td> </td><td>7.9</td><td>비철금속</td><td>비철금속업계 단기 온실가스 감축방안 논의 및 혁신사례 공유</td></tr><tr><td> </td><td>7.15</td><td>시멘트</td><td>시멘트산업 탄소중립 R&D 로드맵 및 탄소중립을 위한 제도개선 과제 마련</td></tr></tbody></table>",
'제1차 녹색성장 이행점검회의 개최\n□ 김황식 국무총리는 9.7(수) 15:00 정부중앙청사에서 \uf000제1차 녹색성장 이행점검회의\uf000를 개최하여,\nㅇ ‘공공건축 에너지효율 향상’과 ‘그린카 산업발전 전략’ 등 두 건에 대한 이행점검결과를 보고받고 보완대책을 논의하였음 * 그린카는 에너지 소비 효율이 우수하고 무공해․저공해 자동차로서 ① 전력을 기반으로 하는 전기차, 연료전지차, ② 엔진을 기반으로 하는 하이브리드차, 클린디젤차 등을 의미\n□ 김총리는 이 자리에서 앞으로 매달 총리가 주재하는 관계장관회의를 통해 녹색성장 정책에 대한 이행실적을 점검하고,\nㅇ 그간 각 부처가 발표했던 주요 녹색성장정책들이 제대로 추진되고 있는지, 문제점이 있다면 그 이유가 무엇이며, 어떻게 해결해야 하는지 현실성 있는 해결방안을 마련해 나갈 계획임을 밝혔음 □ 김총리는 그동안 녹색성장 정책이 주로 계획수립 및 제도개선 과제에 집중하다보니, 상대적으로 집행단계에서 다소 미흡한 점이 있었다고 평가하며\nㅇ 녹색성장이 올바로 뿌리내릴 수 있도록 향후 중점 추진해야 할 핵심과제를 발굴하여 정책역량을 집중하고,\nㅇ 이를 통해 “국민에게 보고 드린 정책들은 반드시 제대로 추진해서 신뢰받는 정부가 되도록 해 달라”고 당부하였음 □ 녹색성장 정책 이행점검을 위해 녹색위는 그동안 관계부처, 민간전문가, 업계와 공동으로 점검을 실시하였으며, 점검결과는 다음과 같음 < ‘공공건축 에너지 효율’ 이행상황 점검 결과 >\n□ ‘08.8월 이후 국토부, 지경부, 환경부 등 7개 부처가 추진중인 3개분야 11개 정책을 점검한 결과\nㅇ 점검결과 신축청사의 에너지효율 기준 강화 등 제도개선과제는 정상추진\nㅇ 그린스쿨, 저탄소 녹색마을 등 실제 집행단계에 있는 과제는 보완이 필요',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64learning_rate
: 3e-05num_train_epochs
: 1max_steps
: 50warmup_ratio
: 0.05fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 3e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: 50lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0029 | 1 | 0.8675 |
0.0057 | 2 | 0.818 |
0.0086 | 3 | 0.796 |
0.0114 | 4 | 0.8434 |
0.0143 | 5 | 0.6103 |
0.0171 | 6 | 0.4978 |
0.02 | 7 | 0.5035 |
0.0229 | 8 | 0.3911 |
0.0257 | 9 | 0.4098 |
0.0286 | 10 | 0.4342 |
0.0314 | 11 | 0.4466 |
0.0343 | 12 | 0.3767 |
0.0371 | 13 | 0.409 |
0.04 | 14 | 0.3986 |
0.0429 | 15 | 0.3631 |
0.0457 | 16 | 0.4237 |
0.0486 | 17 | 0.3902 |
0.0514 | 18 | 0.3602 |
0.0543 | 19 | 0.3855 |
0.0571 | 20 | 0.3344 |
0.06 | 21 | 0.2704 |
0.0629 | 22 | 0.2904 |
0.0657 | 23 | 0.2804 |
0.0686 | 24 | 0.3425 |
0.0714 | 25 | 0.319 |
0.0743 | 26 | 0.279 |
0.0771 | 27 | 0.3664 |
0.08 | 28 | 0.2645 |
0.0829 | 29 | 0.2842 |
0.0857 | 30 | 0.3228 |
0.0886 | 31 | 0.2649 |
0.0914 | 32 | 0.2739 |
0.0943 | 33 | 0.2887 |
0.0971 | 34 | 0.2502 |
0.1 | 35 | 0.2585 |
0.1029 | 36 | 0.3137 |
0.1057 | 37 | 0.2745 |
0.1086 | 38 | 0.2831 |
0.1114 | 39 | 0.2643 |
0.1143 | 40 | 0.2659 |
0.1171 | 41 | 0.2668 |
0.12 | 42 | 0.2635 |
0.1229 | 43 | 0.3134 |
0.1257 | 44 | 0.2747 |
0.1286 | 45 | 0.2791 |
0.1314 | 46 | 0.2394 |
0.1343 | 47 | 0.3008 |
0.1371 | 48 | 0.2529 |
0.14 | 49 | 0.2582 |
0.1429 | 50 | 0.2536 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.2.1
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 1.1.1
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for seongil-dn/bge-m3-kor-retrieval-451949-bs64-admin-50
Base model
BAAI/bge-m3