File size: 5,933 Bytes
d27719b
74c699a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d27719b
 
 
 
 
 
3f99938
d27719b
 
 
 
fc29aef
d27719b
 
 
 
 
 
 
 
 
 
 
 
 
fc29aef
 
 
 
d27719b
fc29aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d27719b
fc29aef
 
 
d27719b
fc29aef
d27719b
fc29aef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d27719b
fc29aef
 
d27719b
fc29aef
d27719b
 
584f97e
 
 
 
 
 
d27719b
9d5da8d
 
 
d27719b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
---
language:
- multilingual
- ar
- bg
- ca
- cs
- da
- de
- el
- en 
- es 
- et 
- fa 
- fi 
- fr
- gl 
- gu
- he 
- hi
- hr
- hu 
- hy
- id
- it
- ja
- ka
- ko
- ku
- lt
- lv
- mk
- mn
- mr
- ms
- my
- nb
- nl
- pl
- pt
- ro
- ru
- sk
- sl 
- sq 
- sr 
- sv
- th
- tr
- uk
- ur
- vi
language_bcp47:
- fr-ca
- pt-br 
- zh-cn
- zh-tw
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
---

# sentence-transformers/clip-ViT-B-32-multilingual-v1

This is a multi-lingual version of the OpenAI CLIP-ViT-B32 model. You can map text (in 50+ languages) and images to a common dense vector space such that images and the matching texts are close. This model can be used for **image search** (users search through a large collection of images) and for **multi-lingual zero-shot image classification** (image labels are defined as text).


## Usage (Sentence-Transformers)

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer, util
from PIL import Image, ImageFile
import requests
import torch

# We use the original clip-ViT-B-32 for encoding images
img_model = SentenceTransformer('clip-ViT-B-32')

# Our text embedding model is aligned to the img_model and maps 50+
# languages to the same vector space
text_model = SentenceTransformer('sentence-transformers/clip-ViT-B-32-multilingual-v1')


# Now we load and encode the images
def load_image(url_or_path):
    if url_or_path.startswith("http://") or url_or_path.startswith("https://"):
        return Image.open(requests.get(url_or_path, stream=True).raw)
    else:
        return Image.open(url_or_path)

# We load 3 images. You can either pass URLs or
# a path on your disc
img_paths = [
    # Dog image
    "https://unsplash.com/photos/QtxgNsmJQSs/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjM1ODQ0MjY3&w=640",

    # Cat image
    "https://unsplash.com/photos/9UUoGaaHtNE/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8Mnx8Y2F0fHwwfHx8fDE2MzU4NDI1ODQ&w=640",

    # Beach image
    "https://unsplash.com/photos/Siuwr3uCir0/download?ixid=MnwxMjA3fDB8MXxzZWFyY2h8NHx8YmVhY2h8fDB8fHx8MTYzNTg0MjYzMg&w=640"
]

images = [load_image(img) for img in img_paths]

# Map images to the vector space
img_embeddings = img_model.encode(images)

# Now we encode our text:
texts = [
    "A dog in the snow",
    "Eine Katze",  # German: A cat
    "Una playa con palmeras."  # Spanish: a beach with palm trees
]

text_embeddings = text_model.encode(texts)

# Compute cosine similarities:
cos_sim = util.cos_sim(text_embeddings, img_embeddings)

for text, scores in zip(texts, cos_sim):
    max_img_idx = torch.argmax(scores)
    print("Text:", text)
    print("Score:", scores[max_img_idx] )
    print("Path:", img_paths[max_img_idx], "\n")

```

## Multilingual Image Search - Demo
For a demo of multilingual image search, have a look at: [Image_Search-multilingual.ipynb](https://github.com/UKPLab/sentence-transformers/tree/master/examples/applications/image-search/Image_Search-multilingual.ipynb) ( [Colab version](https://colab.research.google.com/drive/1N6woBKL4dzYsHboDNqtv-8gjZglKOZcn?usp=sharing) )

For more details on image search and zero-shot image classification, have a look at the documentation on [SBERT.net](https://www.sbert.net/examples/applications/image-search/README.html).


## Training
This model has been created using [Multilingual Knowledge Distillation](https://arxiv.org/abs/2004.09813). As teacher model, we used the original `clip-ViT-B-32` and then trained a [multilingual DistilBERT](https://huggingface.co/distilbert-base-multilingual-cased) model as student model. Using parallel data, the multilingual student model learns to align the teachers vector space across many languages. As a result, you get an text embedding model that works for 50+ languages.

The image encoder from CLIP is unchanged, i.e. you can use the original CLIP image encoder to encode images.

Have a look at the [SBERT.net - Multilingual-Models documentation](https://www.sbert.net/examples/training/multilingual/README.html) on more details and for **training code**.

We used the following 50+ languages to align the vector spaces: ar, bg, ca, cs, da, de, el, es, et, fa, fi, fr, fr-ca, gl, gu, he, hi, hr, hu, hy, id, it, ja, ka, ko, ku, lt, lv, mk, mn, mr, ms, my, nb, nl, pl, pt, pt, pt-br, ro, ru, sk, sl, sq, sr, sv, th, tr, uk, ur, vi, zh-cn, zh-tw.

The original multilingual DistilBERT supports 100+ lanugages. The model also work for these languages, but might not yield the best results.

## Full Model Architecture
```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: DistilBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
  (2): Dense({'in_features': 768, 'out_features': 512, 'bias': False, 'activation_function': 'torch.nn.modules.linear.Identity'})
)
```

## Citing & Authors

This model was trained by [sentence-transformers](https://www.sbert.net/). 
        
If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
```bibtex 
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
```