File size: 1,581 Bytes
a1f5783 f0e9244 a1f5783 f0e9244 a1f5783 f0e9244 a1f5783 f0e9244 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- code
datasets:
- semiotic/SynQL-KaggleDBQA-Train
language:
- en
base_model:
- google-t5/t5-3b
---
# Model Card for T5-3B/SynQL-KaggleDBQA-Train-Run-01
- Developed by: Semiotic Labs
- Model type: [Text to SQL]
- License: [Apache-2.0]
- Finetuned from model: [google-t5/t5-3b](https://huggingface.co/google-t5/t5-3b)
- Dataset used for finetuning: [semiotic/SynQL-KaggleDBQA-Train](https://huggingface.co/datasets/semiotic/SynQL-KaggleDBQA-Train/blob/main/README.md)
## Model Context
Example metadata can be found below, context represents the prompt that is presented to the model. Database schemas follow the encoding method proposed by [Shaw et al (2020)](https://arxiv.org/pdf/2010.12725).
```
"query": "SELECT count(*) FROM singer",
"question": "How many singers do we have?",
"context": "How many singers do we have? | concert_singer | stadium : stadium_id, location, name, capacity, highest, lowest, average | singer : singer_id, name, country, song_name, song_release_year, age, is_male | concert : concert_id, concert_name, theme, stadium_id, year | singer_in_concert : concert_id, singer_id",
"db_id": "concert_singer",
```
## Model Results
Evaluation set: [KaggleDBQA/test](https://github.com/Chia-Hsuan-Lee/KaggleDBQA)
Evaluation metrics: [Execution Accuracy]
| Model | Data | Run | Execution Accuracy |
|-------|------|-----|-------------------|
| T5-3B | semiotic/SynQL-KaggleDBQA | 00 | 0.3514 |
| T5-3B | semiotic/SynQL-KaggleDBQA | 01 | 0.3514 |
| T5-3B | semiotic/SynQL-KaggleDBQA | 02 | 0.3514 | |