SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("selina09/yt_setfit")
# Run inference
preds = model("Works great")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 34.9207 | 102 |
Label | Training Sample Count |
---|---|
0 | 123 |
1 | 41 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0019 | 1 | 0.2503 | - |
0.0942 | 50 | 0.2406 | - |
0.1883 | 100 | 0.2029 | - |
0.2825 | 150 | 0.2207 | - |
0.3766 | 200 | 0.1612 | - |
0.4708 | 250 | 0.0725 | - |
0.5650 | 300 | 0.0163 | - |
0.6591 | 350 | 0.0108 | - |
0.7533 | 400 | 0.0153 | - |
0.8475 | 450 | 0.0486 | - |
0.9416 | 500 | 0.0191 | - |
1.0358 | 550 | 0.0207 | - |
1.1299 | 600 | 0.0148 | - |
1.2241 | 650 | 0.0031 | - |
1.3183 | 700 | 0.001 | - |
1.4124 | 750 | 0.0287 | - |
1.5066 | 800 | 0.0146 | - |
1.6008 | 850 | 0.0147 | - |
1.6949 | 900 | 0.0165 | - |
1.7891 | 950 | 0.0008 | - |
1.8832 | 1000 | 0.0165 | - |
1.9774 | 1050 | 0.0007 | - |
2.0716 | 1100 | 0.0129 | - |
2.1657 | 1150 | 0.0143 | - |
2.2599 | 1200 | 0.0006 | - |
2.3540 | 1250 | 0.0008 | - |
2.4482 | 1300 | 0.0047 | - |
2.5424 | 1350 | 0.0005 | - |
2.6365 | 1400 | 0.0116 | - |
2.7307 | 1450 | 0.0093 | - |
2.8249 | 1500 | 0.0211 | - |
2.9190 | 1550 | 0.0076 | - |
3.0132 | 1600 | 0.0047 | - |
3.1073 | 1650 | 0.0005 | - |
3.2015 | 1700 | 0.0064 | - |
3.2957 | 1750 | 0.014 | - |
3.3898 | 1800 | 0.0479 | - |
3.4840 | 1850 | 0.0005 | - |
3.5782 | 1900 | 0.0045 | - |
3.6723 | 1950 | 0.0188 | - |
3.7665 | 2000 | 0.0004 | - |
3.8606 | 2050 | 0.0122 | - |
3.9548 | 2100 | 0.0004 | - |
4.0490 | 2150 | 0.008 | - |
4.1431 | 2200 | 0.0245 | - |
4.2373 | 2250 | 0.005 | - |
4.3315 | 2300 | 0.0244 | - |
4.4256 | 2350 | 0.0208 | - |
4.5198 | 2400 | 0.0237 | - |
4.6139 | 2450 | 0.0005 | - |
4.7081 | 2500 | 0.0004 | - |
4.8023 | 2550 | 0.02 | - |
4.8964 | 2600 | 0.0004 | - |
4.9906 | 2650 | 0.0067 | - |
5.0847 | 2700 | 0.0099 | - |
5.1789 | 2750 | 0.0138 | - |
5.2731 | 2800 | 0.0192 | - |
5.3672 | 2850 | 0.0217 | - |
5.4614 | 2900 | 0.0056 | - |
5.5556 | 2950 | 0.0003 | - |
5.6497 | 3000 | 0.0052 | - |
5.7439 | 3050 | 0.0123 | - |
5.8380 | 3100 | 0.0136 | - |
5.9322 | 3150 | 0.0221 | - |
6.0264 | 3200 | 0.0235 | - |
6.1205 | 3250 | 0.0144 | - |
6.2147 | 3300 | 0.0174 | - |
6.3089 | 3350 | 0.007 | - |
6.4030 | 3400 | 0.0044 | - |
6.4972 | 3450 | 0.0003 | - |
6.5913 | 3500 | 0.007 | - |
6.6855 | 3550 | 0.0004 | - |
6.7797 | 3600 | 0.0384 | - |
6.8738 | 3650 | 0.0055 | - |
6.9680 | 3700 | 0.0056 | - |
7.0621 | 3750 | 0.0118 | - |
7.1563 | 3800 | 0.0143 | - |
7.2505 | 3850 | 0.0289 | - |
7.3446 | 3900 | 0.0301 | - |
7.4388 | 3950 | 0.0119 | - |
7.5330 | 4000 | 0.012 | - |
7.6271 | 4050 | 0.0138 | - |
7.7213 | 4100 | 0.0148 | - |
7.8154 | 4150 | 0.0003 | - |
7.9096 | 4200 | 0.0268 | - |
8.0038 | 4250 | 0.0131 | - |
8.0979 | 4300 | 0.0237 | - |
8.1921 | 4350 | 0.0004 | - |
8.2863 | 4400 | 0.0211 | - |
8.3804 | 4450 | 0.0092 | - |
8.4746 | 4500 | 0.005 | - |
8.5687 | 4550 | 0.0056 | - |
8.6629 | 4600 | 0.0168 | - |
8.7571 | 4650 | 0.0045 | - |
8.8512 | 4700 | 0.0184 | - |
8.9454 | 4750 | 0.0049 | - |
9.0395 | 4800 | 0.0047 | - |
9.1337 | 4850 | 0.0099 | - |
9.2279 | 4900 | 0.0054 | - |
9.3220 | 4950 | 0.0185 | - |
9.4162 | 5000 | 0.005 | - |
9.5104 | 5050 | 0.0004 | - |
9.6045 | 5100 | 0.013 | - |
9.6987 | 5150 | 0.0002 | - |
9.7928 | 5200 | 0.0187 | - |
9.8870 | 5250 | 0.0003 | - |
9.9812 | 5300 | 0.0081 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for selina09/yt_setfit
Base model
BAAI/bge-small-en-v1.5