Edit model card

Text-to-image Distillation

This pipeline was distilled from SG161222/Realistic_Vision_V4.0 on a Subset of recastai/LAION-art-EN-improved-captions dataset. Below are some example images generated with the finetuned pipeline using small-sd model.


This Pipeline is based upon the paper. Training Code can be found here.

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("segmind/small-sd", torch_dtype=torch.float16)
prompt = "Portrait of a pretty girl"
image = pipeline(prompt).images[0]

Training info

These are the key hyperparameters used during training:

  • Steps: 95000
  • Learning rate: 1e-4
  • Batch size: 32
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: fp16
Downloads last month

Finetuned from

Dataset used to train segmind/small-sd

Spaces using segmind/small-sd 4