metadata
tags:
- mteb
- sentence-transformers
- transformers
- Qwen2
- sentence-similarity
license: apache-2.0
base_model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
model_creator: intfloat
quantized_by: Second State Inc.
gte-Qwen2-1.5B-instruct-GGUF
Original Model
Alibaba-NLP/gte-Qwen2-1.5B-instruct
Run with LlamaEdge
LlamaEdge version: v0.12.2 and above
Prompt template
- Prompt type:
embedding
- Prompt type:
Context size:
32000
Run as LlamaEdge service
wasmedge --dir .:. --nn-preload default:GGML:AUTO:gte-Qwen2-1.5B-instruct-Q5_K_M.gguf \ llama-api-server.wasm \ --prompt-template embedding \ --ctx-size 32000 \ --model-name gte-Qwen2-1.5B-instruct
Quantized GGUF Models
Name | Quant method | Bits | Size | Use case |
---|---|---|---|---|
gte-Qwen2-1.5B-instruct-Q2_K.gguf | Q2_K | 2 | 752 MB | smallest, significant quality loss - not recommended for most purposes |
gte-Qwen2-1.5B-instruct-Q3_K_L.gguf | Q3_K_L | 3 | 980 MB | small, substantial quality loss |
gte-Qwen2-1.5B-instruct-Q3_K_M.gguf | Q3_K_M | 3 | 924 MB | very small, high quality loss |
gte-Qwen2-1.5B-instruct-Q3_K_S.gguf | Q3_K_S | 3 | 861 MB | very small, high quality loss |
gte-Qwen2-1.5B-instruct-Q4_0.gguf | Q4_0 | 4 | 1.07 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
gte-Qwen2-1.5B-instruct-Q4_K_M.gguf | Q4_K_M | 4 | 1.12 GB | medium, balanced quality - recommended |
gte-Qwen2-1.5B-instruct-Q4_K_S.gguf | Q4_K_S | 4 | 1.07 GB | small, greater quality loss |
gte-Qwen2-1.5B-instruct-Q5_0.gguf | Q5_0 | 5 | 1.26 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
gte-Qwen2-1.5B-instruct-Q5_K_M.gguf | Q5_K_M | 5 | 1.28 GB | large, very low quality loss - recommended |
gte-Qwen2-1.5B-instruct-Q5_K_S.gguf | Q5_K_S | 5 | 1.26 GB | large, low quality loss - recommended |
gte-Qwen2-1.5B-instruct-Q6_K.gguf | Q6_K | 6 | 1.46 GB | very large, extremely low quality loss |
gte-Qwen2-1.5B-instruct-Q8_0.gguf | Q8_0 | 8 | 1.89 GB | very large, extremely low quality loss - not recommended |
gte-Qwen2-1.5B-instruct-f16.gguf | f16 | 8 | 3.56 GB | very large, extremely low quality loss - not recommended |
Quantized with llama.cpp b3259