apepkuss79
commited on
Commit
•
124fbda
1
Parent(s):
8dfba16
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,66 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: apache-2.0
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-transformers
|
5 |
+
- transformers
|
6 |
+
- Qwen2
|
7 |
+
- sentence-similarity
|
8 |
license: apache-2.0
|
9 |
+
base_model: Alibaba-NLP/gte-Qwen2-1.5B-instruct
|
10 |
+
model_creator: intfloat
|
11 |
+
quantized_by: Second State Inc.
|
12 |
---
|
13 |
+
|
14 |
+
<!-- header start -->
|
15 |
+
<!-- 200823 -->
|
16 |
+
<div style="width: auto; margin-left: auto; margin-right: auto">
|
17 |
+
<img src="https://github.com/LlamaEdge/LlamaEdge/raw/dev/assets/logo.svg" style="width: 100%; min-width: 400px; display: block; margin: auto;">
|
18 |
+
</div>
|
19 |
+
<hr style="margin-top: 1.0em; margin-bottom: 1.0em;">
|
20 |
+
<!-- header end -->
|
21 |
+
|
22 |
+
# gte-Qwen2-1.5B-instruct-GGUF
|
23 |
+
|
24 |
+
## Original Model
|
25 |
+
|
26 |
+
[Alibaba-NLP/gte-Qwen2-1.5B-instruct](https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.5B-instruct)
|
27 |
+
|
28 |
+
## Run with LlamaEdge
|
29 |
+
|
30 |
+
- LlamaEdge version: [v0.12.2](https://github.com/LlamaEdge/LlamaEdge/releases/tag/0.12.2) and above
|
31 |
+
|
32 |
+
- Prompt template
|
33 |
+
|
34 |
+
- Prompt type: `embedding`
|
35 |
+
|
36 |
+
- Context size: `32000`
|
37 |
+
|
38 |
+
- Run as LlamaEdge service
|
39 |
+
|
40 |
+
```bash
|
41 |
+
wasmedge --dir .:. --nn-preload default:GGML:AUTO:gte-Qwen2-1.5B-instruct-Q5_K_M.gguf \
|
42 |
+
llama-api-server.wasm \
|
43 |
+
--prompt-template embedding \
|
44 |
+
--ctx-size 32000 \
|
45 |
+
--model-name gte-Qwen2-1.5B-instruct
|
46 |
+
```
|
47 |
+
|
48 |
+
## Quantized GGUF Models
|
49 |
+
|
50 |
+
| Name | Quant method | Bits | Size | Use case |
|
51 |
+
| ---- | ---- | ---- | ---- | ----- |
|
52 |
+
| [gte-Qwen2-1.5B-instruct-Q2_K.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q2_K.gguf) | Q2_K | 2 | 752 MB| smallest, significant quality loss - not recommended for most purposes |
|
53 |
+
| [gte-Qwen2-1.5B-instruct-Q3_K_L.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_L.gguf) | Q3_K_L | 3 | 980 MB| small, substantial quality loss |
|
54 |
+
| [gte-Qwen2-1.5B-instruct-Q3_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_M.gguf) | Q3_K_M | 3 | 924 MB| very small, high quality loss |
|
55 |
+
| [gte-Qwen2-1.5B-instruct-Q3_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q3_K_S.gguf) | Q3_K_S | 3 | 861 MB| very small, high quality loss |
|
56 |
+
| [gte-Qwen2-1.5B-instruct-Q4_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_0.gguf) | Q4_0 | 4 | 1.07 GB| legacy; small, very high quality loss - prefer using Q3_K_M |
|
57 |
+
| [gte-Qwen2-1.5B-instruct-Q4_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_K_M.gguf) | Q4_K_M | 4 | 1.12 GB| medium, balanced quality - recommended |
|
58 |
+
| [gte-Qwen2-1.5B-instruct-Q4_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q4_K_S.gguf) | Q4_K_S | 4 | 1.07 GB| small, greater quality loss |
|
59 |
+
| [gte-Qwen2-1.5B-instruct-Q5_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_0.gguf) | Q5_0 | 5 | 1.26 GB| legacy; medium, balanced quality - prefer using Q4_K_M |
|
60 |
+
| [gte-Qwen2-1.5B-instruct-Q5_K_M.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_K_M.gguf) | Q5_K_M | 5 | 1.28 GB| large, very low quality loss - recommended |
|
61 |
+
| [gte-Qwen2-1.5B-instruct-Q5_K_S.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q5_K_S.gguf) | Q5_K_S | 5 | 1.26 GB| large, low quality loss - recommended |
|
62 |
+
| [gte-Qwen2-1.5B-instruct-Q6_K.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q6_K.gguf) | Q6_K | 6 | 1.46 GB| very large, extremely low quality loss |
|
63 |
+
| [gte-Qwen2-1.5B-instruct-Q8_0.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-Q8_0.gguf) | Q8_0 | 8 | 1.89 GB| very large, extremely low quality loss - not recommended |
|
64 |
+
| [gte-Qwen2-1.5B-instruct-f16.gguf](https://huggingface.co/second-state/gte-Qwen2-1.5B-instruct-GGUF/blob/main/gte-Qwen2-1.5B-instruct-f16.gguf) | f16 | 8 | 3.56 GB| very large, extremely low quality loss - not recommended |
|
65 |
+
|
66 |
+
*Quantized with llama.cpp b3259*
|