Full-text search
17 results

argilla / mmlu-eval-argilla

README.md

dataset
3 matches
tags: size_categories:n<1K, format:parquet, modality:text, library:datasets, library:pandas, library:mlcroissant, library:polars, library:argilla, region:us, rlfh, argilla, human-feedback
143
144
145
146
147
s', 'Cyprus', 'Czechia', 'Germany', 'Djibouti', 'Dominica', 'Denmark', 'Dominican Republic', 'Algeria', 'Ecuador', 'Egypt', 'Eritrea', 'Western Sahara', 'Spain', 'Estonia', 'Ethiopia', 'Finland', 'Fiji', 'Falkland Islands (Malvinas)', 'France', 'Faroe Islands', 'Micronesia, Federated States of', 'Gabon', 'Georgia', 'Guernsey', 'Ghana', 'Gibraltar', 'Guinea', 'Guadeloupe', 'Gambia', 'Guinea-Bissau', 'Equatorial Guinea', 'Greece', 'Grenada', 'Greenland', 'Guatemala', 'French Guiana', 'Guam', 'Guyana', 'Hong Kong', 'Heard Island and McDonald Islands', 'Honduras', 'Croatia', 'Haiti', 'Hungary', 'Indonesia', 'Isle of Man', 'India', 'British Indian Ocean Territory', 'Ireland', 'Iran, Islamic Republic of', 'Iraq', 'Iceland', 'Israel', 'Italy', 'Jamaica', 'Jersey', 'Jordan', 'Japan', 'Kazakhstan', 'Kenya', 'Kyrgyzstan', 'Cambodia', 'Kiribati', 'Saint Kitts and Nevis', 'Korea, Republic of', 'Kuwait', "Lao People's Democratic Republic", 'Lebanon', 'Liberia', 'Libya', 'Saint Lucia', 'Liechtenstein', 'Sri Lanka', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia', 'Macao', 'Saint Martin (French part)', 'Morocco', 'Monaco', 'Moldova, Republic of', 'Madagascar', 'Maldives', 'Mexico', 'Marshall Islands', 'North Macedonia', 'Mali', 'Malta', 'Myanmar', 'Montenegro', 'Mongolia', 'Northern Mariana Islands', 'Mozambique', 'Mauritania', 'Montserrat', 'Martinique', 'Mauritius', 'Malawi', 'Malaysia', 'Mayotte', 'Namibia', 'New Caledonia', 'Niger', 'Norfolk Island', 'Nigeria', 'Nicaragua', 'Niue', 'Netherlands', 'Norway', 'Nepal', 'Nauru', 'New Zealand', 'Oman', 'Pakistan', 'Panama', 'Pitcairn', 'Peru', 'Philippines', 'Palau', 'Papua New Guinea', 'Poland', 'Puerto Rico', "Korea, Democratic People's Republic of", 'Portugal', 'Paraguay', 'Palestine, State of', 'French Polynesia', 'Qatar', 'Réunion', 'Romania', 'Russian Federation', 'Rwanda', 'Saudi Arabia', 'Sudan', 'Senegal', 'Singapore', 'South Georgia and the South Sandwich Islands', 'Saint Helena, Ascension and Tristan da Cunha', 'Svalbard and Jan Mayen', 'Solomon Islands', 'Sierra Leone', 'El Salvador', 'San Marino', 'Somalia', 'Saint Pierre and Miquelon', 'Serbia', 'South Sudan', 'Sao Tome and Principe', 'Suriname', 'Slovakia', 'Slovenia', 'Sweden', 'Eswatini', 'Sint Maarten (Dutch part)', 'Seychelles', 'Syrian Arab Republic', 'Turks and Caicos Islands', 'Chad', 'Togo', 'Thailand', 'Tajikistan', 'Tokelau', 'Turkmenistan', 'Timor-Leste', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Türkiye', 'Tuvalu', 'Taiwan, Province of China', 'Tanzania, United Republic of', 'Uganda', 'Ukraine', 'United States Minor Outlying Islands', 'Uruguay', 'Uzbekistan', 'Holy See (Vatican City State)', 'Saint Vincent and the Grenadines', 'Venezuela, Bolivarian Republic of', 'Virgin Islands, British', 'Virgin Islands, U.S.', 'Viet Nam', 'Vanuatu', 'Wallis and Futuna', 'Samoa', 'Yemen', 'South Africa', 'Zambia', 'Zimbabwe'] | 
| free-feedback | 7. Provide additional information or explanation about your responses | text | False | N/A | N/A | 
 
 
The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata". 

argilla / mmlu-eval-progress

README.md

dataset
3 matches
tags: size_categories:n<1K, format:parquet, modality:text, library:datasets, library:pandas, library:mlcroissant, library:polars, library:argilla, region:us, rlfh, argilla, human-feedback
87
88
89
90
91
s', 'Cyprus', 'Czechia', 'Germany', 'Djibouti', 'Dominica', 'Denmark', 'Dominican Republic', 'Algeria', 'Ecuador', 'Egypt', 'Eritrea', 'Western Sahara', 'Spain', 'Estonia', 'Ethiopia', 'Finland', 'Fiji', 'Falkland Islands (Malvinas)', 'France', 'Faroe Islands', 'Micronesia, Federated States of', 'Gabon', 'Georgia', 'Guernsey', 'Ghana', 'Gibraltar', 'Guinea', 'Guadeloupe', 'Gambia', 'Guinea-Bissau', 'Equatorial Guinea', 'Greece', 'Grenada', 'Greenland', 'Guatemala', 'French Guiana', 'Guam', 'Guyana', 'Hong Kong', 'Heard Island and McDonald Islands', 'Honduras', 'Croatia', 'Haiti', 'Hungary', 'Indonesia', 'Isle of Man', 'India', 'British Indian Ocean Territory', 'Ireland', 'Iran, Islamic Republic of', 'Iraq', 'Iceland', 'Israel', 'Italy', 'Jamaica', 'Jersey', 'Jordan', 'Japan', 'Kazakhstan', 'Kenya', 'Kyrgyzstan', 'Cambodia', 'Kiribati', 'Saint Kitts and Nevis', 'Korea, Republic of', 'Kuwait', "Lao People's Democratic Republic", 'Lebanon', 'Liberia', 'Libya', 'Saint Lucia', 'Liechtenstein', 'Sri Lanka', 'Lesotho', 'Lithuania', 'Luxembourg', 'Latvia', 'Macao', 'Saint Martin (French part)', 'Morocco', 'Monaco', 'Moldova, Republic of', 'Madagascar', 'Maldives', 'Mexico', 'Marshall Islands', 'North Macedonia', 'Mali', 'Malta', 'Myanmar', 'Montenegro', 'Mongolia', 'Northern Mariana Islands', 'Mozambique', 'Mauritania', 'Montserrat', 'Martinique', 'Mauritius', 'Malawi', 'Malaysia', 'Mayotte', 'Namibia', 'New Caledonia', 'Niger', 'Norfolk Island', 'Nigeria', 'Nicaragua', 'Niue', 'Netherlands', 'Norway', 'Nepal', 'Nauru', 'New Zealand', 'Oman', 'Pakistan', 'Panama', 'Pitcairn', 'Peru', 'Philippines', 'Palau', 'Papua New Guinea', 'Poland', 'Puerto Rico', "Korea, Democratic People's Republic of", 'Portugal', 'Paraguay', 'Palestine, State of', 'French Polynesia', 'Qatar', 'Réunion', 'Romania', 'Russian Federation', 'Rwanda', 'Saudi Arabia', 'Sudan', 'Senegal', 'Singapore', 'South Georgia and the South Sandwich Islands', 'Saint Helena, Ascension and Tristan da Cunha', 'Svalbard and Jan Mayen', 'Solomon Islands', 'Sierra Leone', 'El Salvador', 'San Marino', 'Somalia', 'Saint Pierre and Miquelon', 'Serbia', 'South Sudan', 'Sao Tome and Principe', 'Suriname', 'Slovakia', 'Slovenia', 'Sweden', 'Eswatini', 'Sint Maarten (Dutch part)', 'Seychelles', 'Syrian Arab Republic', 'Turks and Caicos Islands', 'Chad', 'Togo', 'Thailand', 'Tajikistan', 'Tokelau', 'Turkmenistan', 'Timor-Leste', 'Tonga', 'Trinidad and Tobago', 'Tunisia', 'Türkiye', 'Tuvalu', 'Taiwan, Province of China', 'Tanzania, United Republic of', 'Uganda', 'Ukraine', 'United States Minor Outlying Islands', 'Uruguay', 'Uzbekistan', 'Holy See (Vatican City State)', 'Saint Vincent and the Grenadines', 'Venezuela, Bolivarian Republic of', 'Virgin Islands, British', 'Virgin Islands, U.S.', 'Viet Nam', 'Vanuatu', 'Wallis and Futuna', 'Samoa', 'Yemen', 'South Africa', 'Zambia', 'Zimbabwe'] | 
| free-feedback | 7. Provide additional information or explanation about your responses | text | False | N/A | N/A | 
 
 
The **suggestions** are human or machine generated recommendations for each question to assist the annotator during the annotation process, so those are always linked to the existing questions, and named appending "-suggestion" and "-suggestion-metadata" to those, containing the value/s of the suggestion and its metadata, respectively. So on, the possible values are the same as in the table above, but the column name is appended with "-suggestion" and the metadata is appended with "-suggestion-metadata". 

sentence-transformers / mldr

README.md

dataset
1 matches
tags: task_categories:feature-extraction, task_categories:sentence-similarity, multilinguality:monolingual, language:ar, language:de, language:en, language:es, language:fr, language:hi, language:it, language:ja, language:ko, language:pt, language:ru, language:th, language:zh, size_categories:100K<n<1M, format:parquet, modality:text, library:datasets, library:dask, library:mlcroissant, library:polars, region:us, sentence-transformers
1269
1270
1271
1272
1273
naje Cyrus The Virus Grissom, interpretado por John Malkovich, para comunicarse desde la prisión, empleando una imagen de la Última Cena a la que se le habían quitado los ojos de los personajes para revelar el mensaje de una carta aparentemente inocente, de un abogado.\nEl segundo método, revelar un mensaje en unas letras aleatorias, fue empleado por el espía ruso, Valeri Petrofsky, interpretado por Pierce Brosnan, en la película de 1987 El cuarto protocolo.\n\nLas Rejillas como método de transposición\n\nLas rejillas pueden emplearse, igualmente, como métodos directos de transposición empleándolas como guía para realizar una transposición. Al parecer, esta transición se llevó a cabo en algún momento del siglo XVII. A este respecto las rejillas se dividen en dos grupos según su forma de creación, las ordinarias y las rotatorias. Las rejillas ordinarias se crean tal y como describió Cardano. Para las rejillas giratorias véase más abajo.\nUna posibilidad se ha sugerido para evitar a los comunicantes tener que mantener el secreto de sus rejillas (uno de los clásicos problemas de reparto de claves), emplear crucigramas, idealmente, los publicados en periódicos de uso común tanto para emisor como para receptor. De esa forma, la rejilla ya estaría disponible y sería totalmente inocente y justificable su posesión. Es importante destacar que los crucigramas de la tradición anglosajona (en lengua inglesa) presentan un mayor número de cuadros negros, y un menor número de palabras de dos letras que sus equivalentes de tradición continental (en francés, o español, por ejemplo).\nEn todo caso, tanto en uno como en otro caso, las rejillas se emplean para dotar de una cierta irregularidad a la transposición de un modo que sería difícil conseguir con una clave simplemente memorizada. A este respecto, la rejilla puede ser una herramienta muy útil transponiendo de muy diversas formas según se varíe el modo de introducir el texto en claro (de izquierda a derecha, en columnas, empezando por una casilla determinada, etcétera) y de leer el texto cifrado (donde se pueden hacer las mismas consideraciones). Otra posibilidad es la numeración previa, y desordenada, de las casillas de nuestra rejilla, escribiendo el mensaje en claro de acuerdo con este orden, se logra una transposición razonablemente compleja. No obstante, este sistema es propenso a los errores de transcripción.\nEl general italiano Luigi Sacco en su libro Manuel de cryptographie presenta lo que llama “rejilla indefinida”, una rejilla de forma rectangular con un número de filas fijo y un número de columnas arbitrario (o elegido en función de la longitud del mensaje). En cada una de las columnas, se reparten las celdas arbitrariamente entre llenas y vacías dentro del total de filas predeterminado. De esta forma se puede, igualmente, señalar una gran variedad de transposiciones distintas con la misma rejilla. Rejillas de este tipo fueron empleadas durante la Guerra Civil española entre 1936 y 1939.\nEsta flexibilidad de uso se señala, por ejemplo, en las cifras empleadas por algunos espías confederados durante la Guerra de Secesión, al emplear solamente fragmentos de una rejilla mayor (George T. Sinclair, relativo al asunto del buque Pampero),\u200b o por la rejilla de cifrado alemana Rasterschlüssel 44,\u200b empleada para el nivel táctico.\n\nLa Rejilla giratoria\n\nLas rejillas giratorias fueron descritas por el Barón Edouard Fleissner von Wostrowitz, antiguo coronel del ejército austrohúngaro, y por ese motivo también se las llama rejillas de Fleissner, aunque parece ser que ya estaban en uso anteriormente. Se trata de rejillas de forma cuadrada que tienen cuatro posiciones dependiendo de la parte que quede hacia arriba.\nPara construirlas, basta con dividir la rejilla en cuatro cuadrantes iguales y numerar cada uno de ellos con la especificidad de que cada cuarto estará girado 90º con respecto al precedente. Una vez hecho esto, bastará con perforar una vez (y solamente una) cada uno de los números.\u200b En caso de que la rejilla tenga un número impar de casillas por lado (como 5, 7, 9 ó superiores), cada uno de estos cuatro cuadrantes tendrá forma de paralelogramo y habrá que aclarar si la casilla central se deja sin perforar o, cuando tendría que ser rellenada.\nPara manejar las rejillas giratorias basta con escribir el mensaje en claro en los huecos perforados en las mismas e ir girando la rejilla conforme se iban terminando los espacios.\nDurante la I Guerra Mundial, en 1916, el ejército alemán empleó una serie de rejillas giratorias para sus comunicaciones. Estas rejillas recibían nombres distintos según el tamaño de las mismas, en las rejillas de orden impar, uno de los lados estaba marcado en color negro para indicar que era con ese con el que debía rellenarse la casilla central:\u200b \n 5x5 ANNA\n 6x6 BERTA\n 7x7 CLARA\n 8x8 DORA\n 9x9 EMIL\n 10x10 FRANZ\n\nEn la cultura popular\n\nEl uso más famoso de este método de cifrado aparece en la novela Matías Sandorf de Julio Verne, donde no sólo tiene una importancia crucial en la trama sino que se explica su funcionamiento.\u200b\n\nElaboración de las rejillas giratorias\n\nEn su libro, el coronel Fleissner da a conocer un método para la elaboración de rejillas cuadradas de orden impar, (con lados de 3, 5, 7 y sucesivos) dejando la casilla central sólida, sin agujero. Por su parte, en su Tratado de criptografía con especial aplicación al Ejército, J. G. Carmona\u200b, aparte de mencionar el anterior, indica un método para la elaboración de rejillas cuadradas de orden par (con lados de 2, 4, 6 y sucesivos). El método de Carmona, cómo él mismo indica, tiene la peculiaridad de que cada cuadrado de orden superior, se puede construir sobre el cuadrado de orden inferior. Indica también que, si se deja sin fijar al siguiente cada uno de los cuadrados de orden inferior, se puede, por rotación, aumentar el número de rejillas posibles a generar con la misma plantilla.\nOtro método alternativo, en las rejillas cuadradas de orden par, es la división del total de la plantilla en cuatro cuadrantes y numerar cada una de las casillas dentro de los mismos. La rotación de estos números y su sucesiva perforación, sin repetir nunca, permite elaborar la rejilla.\n\nSeguridad de los cifrados con rejilla\n\nLa seguridad de los cifrados con rejilla es la propia de los sistemas de cifrado por transposición aunque no es menos cierto que las rejillas, en cuanto tales, pueden violar los segundo y tercer principios de Kerckhoffs al ser recordatorios escritos tanto del algoritmo de cifrado como de la clave por cuanto que su descubrimiento revelaría completamente el contenido de los mensajes secretos. Siendo su naturaleza la propia de un sistema de transposición, pueden ser empleadas en conjunción con cifrados por sustitución, de hecho, el general Luigi Sacco recomendó emplear las rejillas junto con métodos de sustitución fraccionada, como las cifras bífida y trífida de Delastelle, para aumentar la seguridad tanto de unas como de otras.', 
'negative_15': 'Facundo Valverde García\n\nBiografía\n\nPasó su infancia entre Cartagena (Murcia) y la Sierra del Taibilla (Albacete) donde trabajaba su padre en la construcción de la canalización de aguas hasta Cartagena. Cursó los estudios de Bachillerato en el Colegio Hispania de Cartagena.\nEn 1953 se trasladó a Madrid para estudiar Medicina. Poco después de acabar la carrera en 1959, tomó la decisión de dedicarse a la investigación, en una época donde esta profesión era prácticamente desconocida, dedicándose al estudio de la estructura, desarrollo y función del cerebro.\nDefendió su tesis doctoral en 1962 y entre 1963 y 1965 estuvo becado por los National Institutes of Health (USA) en la Universidad de Harvard en Boston.\nA su regreso a España en 1965 continuó sus estudios en el Instituto Cajal del Consejo Superior de Investigaciones Científicas (CSIC) donde llegó a ser Profesor de Investigación. Con la financiación obtenida de varias Fundaciones Juan March, Lepetit, Eugenio Rodríguez Pascual, Ramón Areces) y posteriormente gracias a la financiación de Proyectos de Investigación por la Comisión Asesora de Investigación Científica y Técnica, desarrolló su labor investigadora en Neurociencia durante más de cuarenta años junto a varios discípulos y colaboradores que se formaron o trabajaron junto a él, hasta su jubilación en 2003.\nDiscípulo del Profesor Fernando de Castro Rodríguez, sus trabajos de investigación se han basado fundamentalmente en el estudio del desarrollo y estructura del cerebro en varios mamíferos utilizando diversas técnicas histológicas.\nHa formado parte de varios comités científicos de evaluación así como de consejos editoriales en revistas especializadas. Autor de numerosas publicaciones en revistas internacionales, diversos libros y capítulos de libros colectivos, ha recibido varios premios por su labor investigadora entre los que cabe destacar el Premio Rey Jaime I de la Generalitat Valenciana en 1992.\n\nLabor investigadora\n\nDeprivación sensorial. Plasticidad neuronal.\nEntre 1966 y 1970, tomando como modelo experimental la corteza visual, sus estudios se centraron en la demostración de la variabilidad del número de espinas dendríticas (lugar donde se establecen contactos funcionales - sinapsis - sobre las dendritas en las células piramidales de la corteza visual) en ratones con deprivación de la visión por mantenimiento en oscuridad absoluta desde su nacimiento y por distintos periodos de tiempo. Aunque el ratón apenas depende de la visión para el desarrollo de sus funciones, la estructura de la corteza visual en este roedor mantiene el mismo patrón estructural que en el resto de los mamíferos.\nLa disminución del número de espinas dendríticas en ratones mantenidos en la oscuridad resultó ser altamente significativa en el primer mes de vida del animal, después de que estos abrieran los ojos (el ratón abre los ojos normalmente en torno al día 13-14). En comparación, los animales mantenidos en oscuridad desde su nacimiento por períodos prolongados de tiempo (hasta 6 meses), mostraban también una disminución del número de espinas, si bien este disminución no era tan acusada como en períodos juveniles. Según los datos obtenidos, se demostró que, pese a existir cierta tendencia a la recuperación del número de espinas después de vueltos a la normalidad, quedaba una población de neuronas en la que el número de espinas nunca llagaba a alcanzar cifras normales. La privación visual no afectaba a otras áreas corticales.\nEstos estudios demostraron por primera vez que la deprivación sensorial produce variaciones morfológicas en la estructura del cerebro (plasticidad neuronal), estando las espinas dendríticas probablemente implicadas en los procesos de memoria y aprendizaje. Con estas observaciones se obtuvo la conclusión de que la deprivación de la visión provoca una alteración o daño permanente en algunas neuronas de la corteza visual, daño que resultó ser más acusado en animales jóvenes al no recuperar el número normal de espinas dendríticas una vez vueltos a las condiciones normales. (Trabajos publicados 14-22).\nOrganización de la corteza cerebral.\nEn el decenio de 1970 a 1980 estudió la organización de la corteza visual primaria en primates (Área 17) describiendo numerosas variedades celulares y estableciendo las bases estructurales de la organización columnar de la corteza cerebral, cuya unidad es la columna cortical extendida en todo el espesor de la corteza cerebral. Esta unidad anatómica y funcional, de unas 400 micras de diámetro, cuyo esbozo estructural describió en 1971, contiene, además de las células piramidales, que representan el 80% de las neuronas de la corteza, un amplio espectro de variedades celulares que pueden caracterizarse, no solo por su morfología, sino también por la longitud y tipo de ramificación axonal y dendrítica que poseen (células piramidales de axón recurrente, células estrelladas con espinas, células en ovillo, en cesto, de doble penacho, etc). Estos estudios probaron que existen variedades neuronales que, desde un punto de vista morfológico y probablemente funcional también, son distintas para cada especie, existiendo variedades celulares que no se encuentran en otras especies por lo que la descripción de un patrón estructural único no es aplicable a menos de recurrir a una simplificación y generalización extrema. (Trabajos publicados 23, 27-29, 35, 38, 40, 50, 51, 74 y 76).\nLas células en candelabro: una nueva variedad neuronal. \nLas células en candelabro corresponden a una variedad neuronal que, junto con su colaborador A. Fairén, describe por primera vez en la corteza visual del gato en 1980. Solo descritas anteriormente como células axo-axónicas en el cerebro de la rata, esta variedad neuronal tiene la particularidad de que sus terminaciones axonales hacen contacto sináptico exclusivamente sobre los segmentos iniciales del axón de las células piramidales de la corteza cerebral donde probablemente ejerzan un poderoso efecto inhibidor (Trabajos publicados 30 y 31). En estudios posteriores realizados con algunos de sus colaboradores, demostró que esta variedad neuronal no era exclusiva de determinadas especies sino que pueden observarse en toda clase de mamíferos estudiados, desde insectívoros a primates, incluido el hombre (Trabajos publicados 32-35, 38, 40, 50 y 51).\nEl Sistema Olfativo.\nA partir de 1986 una serie de estudios centraron su interés en el Sistema olfativo como modelo experimental, dada la especial naturaleza de sus componentes entre los que cabe destacar la presencia de neuronas capaces de reproducirse durante toda la vida y la existencia de una variedad única de neuroglia que ha servido para estudios de regeneración nerviosa en pacientes con lesiones medulares (Trabajos publicados 62 y 70). Todos estos estudios dieron lugar a numerosas publicaciones sobre Anatomía comparada (Trabajos publicados 32, 33, 36-39, 44, 45, 48 y 51), migraciones celulares durante el desarrollo (Trabajos publicados 62-65 y 67) y otra serie de estudios referidos al bulbo, centros olfativos y factores de trascripción implicados en la regionalización del cerebro (Trabajos publicados 55, 68, 70 y 72).\n\nPremios Y Otras Distinciones\n\n- Premio Santiago Ramón y Cajal en Biología (CSIC), 1962\n- Research Fellow in Anatomy, Universidad de Harvard 1963-1965\n- Miembro, American Association of Anatomists (USA),desde 1964\n- Miembro, Cajal Club (USA), desde 1964\n- Jefe de la Sección de Neuroanatomía Comparada. Instituto Santiago Ramón y Cajal (CSIC), 1968-1984\n- Premio Santiago Ramón y Cajal en Biología (CSIC), 1970\n- Miembro, International Brain Research Organization (IBRO), desde 1970\n- Premio Francisco Franco de Ciencias (CSIC) 1971\n- Miembro, Society for Neuroscience (SFN), desde 1975\n- Miembro del Comité Editorial de la revista Synapse (Wiley, New York), 1975-1998\n- Miembro del Comité Editorial de la revista Brain, Behavior and Evolution (S.Karger, Basel), 1978-1990\n- Premio Rey Jaime I \u200b 1992\n- Miembro del Alto Consejo Consultivo de la Generalitat Valenciana, 1992-2000\n- Neurona de Plata. Instituto Santiago Ramón y Cajal (CSIC), 2000\n- Profesor Vinculado ad honorem. Instituto Santiago Ramón y Cajal (CSIC), 2003-2005', 
'negative_16': 'Difusión simple\n\nSe denomina difusión simple al proceso por el cual se produce un flujo de moléculas a través de una membrana permeable sin que solo exista un aporte externo de energía molecular. Este proceso, que en última instancia es por una diferencia de concentración molecular entre los dos medios separados por la membrana, no requiere de un aporte de energía debido a que su principal fuerza impulsora es el aumento de la entropía total del sistema\nEn este proceso el desplazamiento de las moléculas se produce siguiendo el gradiente de concentración, las moléculas atraviesan la membrana desde el medio donde se encuentran en mayor concentración, hacia el medio donde se encuentran en menor concentración.\nEl proceso de difusión simple se encuentra descrito por las Leyes de Fick, las cuales relacionan la densidad del flujo de las moléculas con la diferencia de concentración entre los dos medios separados por la membrana, el coeficiente de difusión de las mismas y la permeabilidad de la membrana.\nEl proceso de difusión simple es de vital importancia para el transporte de moléculas pequeñas a través de las membranas celulares. Es el único mecanismo por el cual el oxígeno ingresa a las células que lo utilizan como aceptor final de electrones en la cadena respiratoria y uno de los principales mecanismos de regulación osmótica en las células.\n\nDifusión\n\nDifusión es el proceso irreversible por el cual un grupo de partículas se distribuye de manera uniforme en un medio ya sea vacío o formado por otro grupo de partículas. Este proceso es estadísticamente predecible en conjunto, aunque el movimiento de cada partícula aislada es totalmente aleatorio. Se encuentra impulsado por el movimiento térmico de las partículas que componen ese sistema y se produce siguiendo las líneas de mayor diferencia de concentración entre regiones, esto es, siguiendo los gradientes de concentración.\n\nEn las membranas celulares\n\nEn el caso de las células vivas, el proceso de difusión simple se establece a través de la membrana celular, por lo que de hecho existen tres procesos de difusión encadenados, una difusión que ocurre en el medio de mayor concentración, una difusión que ocurre en el medio de separación y una difusión que ocurre en el medio de menor concentración. Como el proceso limitante de la velocidad es la difusión a través del medio de separación, se puede simplificar un modelo donde el flujo de partículas depende de la diferencia de concentración entre ambos lados del medio de separación y del tipo de interacciones que presente la molécula que va a atravesar la membrana con ese medio. \nLas moléculas que pueden atravesar con facilidad las membranas celulares, debido a este fenómeno, son únicamente las de los gases (por ejemplo CO₂, O₂), las moléculas hidrofóbicas (por ejemplo benceno) y las moléculas polares pequeñas (por ejemplo H₂O y etanol), esto es así debido a que las moléculas hidrofóbicas y apolares son solubles en la región central apolar de la bicapa lipídica, y las moléculas polares pequeñas son lo suficientemente pequeñas como para que las interacciones desfavorables se vean compensadas por un aumento de la entropía del sistema. Por otra parte, las moléculas polares grandes tales como la glucosa, los aminoácidos y las moléculas cargadas o iones (Hx⁺, Na⁺, Cl⁺ y Ca²⁺) establecen interacciones demasiado fuertes con el medio acuoso fuera de la bicapa lipídica, por lo que les resulta muy desfavorable desde el punto de vista energético romper estas interacciones para atravesar la región central hidrofóbica. Como consecuencia las membranas biológicas son prácticamente impermeables a este tipo de moléculas, por lo que requieren de otros mecanismos de transporte.\n\nLeyes de Fick en la difusión simple\n\nPara el estudio del transporte a través de las membranas celulares por difusión simple, es necesario considerar las leyes que rigen los procesos de difusión: las Leyes de Fick. Cuando un sistema presenta una diferencia en el número de moléculas por unidad de volumen (concentración), por dentro y por fuera de un espacio delimitado por una membrana, se establece un gradiente de concentración que, expresado en forma diferencial sencilla, es proporcional a la diferencia en la concentración entre ambos medios (c) e inversamente proporcional al espesor de la membrana (x): \nEn caso de que la membrana sea permeable a las moléculas desigualmente distribuidas, se establece un flujo neto de partículas desde la zona de mayor concentración hacia la zona de menor concentración. La densidad de partículas en este flujo (J) depende del gradiente de concentración y de la facilidad con que las partículas atraviesan la membrana (D o coeficiente de difusión). El signo negativo indica la dirección del flujo (de mayor a menor concentración\nAl considerar una membrana de espesor no infinitesimal relativamente constante, en la cual se presenta una diferencia de concentración también constante, la primera Ley de Fick se puede reescribir como: \nEn esta ecuación el coeficiente de permeabilidad de la membrana queda definido como: \nPor lo que la primera ley de Fick también puede escribirse cómo: \nLa ecuación de continuidad que expresa la conservación del número de moléculas, obtenida a partir del análisis del flujo entrante y saliente de las moléculas a través de un área y de la rapidez de acumulación (aumento por unidad de tiempo del número de partículas unidad de volumen) es:\nReemplazando, se obtiene:', 
'negative_17': 'Guayabero\n\nForma de vida\n\nLos Guayaberos eran nómadas, pero el despojo de su territorio por la colonización, los obligó a sedentarizarse. Aún se movilizan en canoas por el río y en caminatas de caza y recolección por el bosque, pero la agricultura es fundamental para su subsistencia, al lado de la pesca y la artesanía.\nEn las huertas o chagras (lula, baká), el cultivo principal es la yuca amarga, o brava (baw, halw+ah, haltoet), de la que obtienen "casabe" (ben:tortilla) y "fariña" (maniku, béñel, beñilon: harina tostada). Cultivan también maíz (hes), batata (nat, d+ad), bore, ñame, aguacate, cacao, chontaduro, papaya, piña (duind), ají (nol), calabaza (yam), plátano, caña de azúcar, arroz, mango, algodón (papud), tabaco (jo) y achiote (hoes). El hombre es el encargado de tumbar y quemar para preparar el terreno y la mujer siembra, cuida y cosecha, (aunque hoy día esto último lo hacen juntos-hombre y mujer) \nCazan con arcos (fadoit y woijta) y flechas (buya) y jabalinas o lanzas (b+oin), dantas (mesa), venados (alái), chigüiros (humbóe), diferentes clases de monos, cachirres (makléh), armadillos (tuha), pecarís (chama), lapas (ap+), agutís, aves, iguanas (matiw), y tortugas (hachk). Pescan tradicionalmente con arco y flecha y arpones (b+oin) y barbasco y además, actualmente con anzuelos y redes. Recolectan gran número de frutos y semillas (bats) silvestres, "mojojoy" (larvas de coleópteros Rynchophorus spp. que proliferan en las palmas) y huevos de tortuga, iguana y aves. Crían gallinas y cerdos para la venta.\nLos hombres tejen instrumentos para procesar la yuca (wat: sebucán; hapaj: cernidor) y canastos para recibir la masa (japox), asarla (juit) y almacenar la harina (mapiri) o para otros usos. Las mujeres hilan fibra de tronco de palma y con ella fabrican hamacas (bu), mochilas y brazaletes; fabrican canastas de carga (joel); telas de corteza taja taja, del árbol f+tne; recipientes de totumo (haaft); y también ollas de barro (marma).\nPara poder subsistir, muchos guayabero trabajan temporalmente por un salario. El desplazamiento forzado, la reducción de su territorio y de la fauna y flora del bosque han causado un gran perjuicio a los Guayabero, por lo que hoy se ven afectados por la desnutrición, la tuberculosis y el incremento de las infecciones intestinales y respiratorias.\n\nMatrimonio\n\nEl matrimonio ocurre a temprana edad, desde los 12 años para las mujeres y los 14 para los hombres. Por solicitud del novio los padres conversan y arreglan la fiesta de bodas (aunque en sí no hay una ceremonia como lo hay entre los occidentales), que a veces ocurre cuando la pareja ya convive. El matrimonio preferencial es entre primos cruzados. La regla es la monogamia. Es posible el divorcio, especialmente cuando se arguye que el cónyuge es perezoso o mal trabajador o la infidelidad.\n\nCosmovisión\n\nConciben el universo constituido por diferentes niveles: en el superior o "cielo" están con los astros, seres que han desempeñado papeles especiales y espíritus de los antepasados buenos; en la tierra además de lo que vemos comúnmente, hay espíritus dép que influyen negativa o positivamente sobre la gente.\nPara los Guayabero, determinados héroes han desempeñado un papel fundamental. Kuwei fue el creador que formó la tierra, la primera mujer, Jumino, a diferentes gentes y a varias especies de animales. Huimit, el sol, era un jefe guayabero. Nejeim fue el héroe cultural que enseñó a los Guayaberos a conocer su medio y practicar diversas actividades de subsistencia. Con él y otros antepasados aun pueden comunicarse en las ceremonias en las que se consume la bebida del "yajé" (tuipaj). La corteza cruda del yajé se masca como estimulante; en tanto que el "yopo" (dop), es inhalado (tuw) por los hombres, para averiguar el futuro o qué están tramando otras personas.\nLos "payes" (pinhoin) pueden tratar con los dép y controlar las enfermedades, así como dirigir los rituales con el yajé y el uso del yopo. Son asistidos por cantores que desempeñan un papel imprescindible en su labor.', 
'negative_18': 'Choque hipovolémico\n\nCausas\n\nEl choque hipovolémico es consecuencia de pérdidas de líquidos internos o externos por la disminución de la masa de hematíes y de plasma sanguíneo por hemorragia o por la pérdida de volumen plasmático como consecuencia del secuestro de líquido en el espacio extravascular o de pérdidas digestivas, urinarias o pérdidas insensibles.\u200b\nLas pérdidas internas pueden deberse a una desviación al tercer espacio, escape de líquidos de los capilares del intestino hacia la luz intestinal, hemorragia interna y deterioro del retorno venoso por obstrucción de la vena cava. Dos causas comunes de la rápida pérdida de sangre interna son las lesiones de órganos sólidos y rotura de un aneurisma aórtico abdominal. Un choque hipovolémico significativo puede ser el resultado de pérdida de fluidos, diferentes a la sangre. Dos ejemplos son la gastroenteritis y las quemaduras extensas. \nLas pérdidas externas de líquidos se refieren al escape de líquidos, plasma o líquidos del cuerpo, por hemorragia debido a heridas externas. La cantidad de sangre circulante en el cuerpo puede disminuir cuando se pierde demasiada cantidad de otros líquidos corporales, como en las quemaduras, diarrea y vómitos.\u200b La pérdida aguda de sangre externa secundaria a trauma penetrante y trastornos de sangrado gastrointestinal graves son las dos causas más comunes de choque hemorrágico. El choque hemorrágico también puede resultar de gran pérdida interna súbita de sangre en las cavidades torácica y abdominal.\n\nChoque por traumatismos\n\nLos traumatismos también pueden ser causa de choque. Aunque muchas veces la pérdida de sangre es derivada de la hemorragia, también puede ocurrir sin pérdida de sangre. La contusión del cuerpo puede lesionar los capilares hasta el grado de permitir una pérdida excesiva de plasma hacia los tejidos promoviendo una disminución del volumen plasmático. este tipo de choque por traumatismo también puede incluir un cierto grado de choque neurogénico causado por el dolor, que es así mismo, un factor agravante de este tipo de choque al inhibir el centro vasomotor, con lo que se eleva la capacidad vascular y disminuye el retorno venoso.\n\nPatogenia\n\nEl cuerpo humano responde ante una hemorragia aguda con la activación de los principales sistemas fisiológicos: la hematológica, cardiovascular, renal, y los sistemas neuroendocrinos. Estos intrincados mecanismos son eficaces en el mantenimiento de la perfusión de órganos vitales ante una grave pérdida de sangre. Sin sangre y fluidos de reanimación y/o corrección de la patología subyacente que causa la hemorragia, disminuye la perfusión cardiaca y se instala sin demora una insuficiencia multi-orgánica.\n\nRespuesta hematológica\n\nLa respuesta del sistema hematológico ante una pérdida de sangre aguda y grave se basa en la activación de la cascada de coagulación y la vasoconstricción de vasos sanguíneos sangrantes, fundamentalmente por medio de la liberación local de tromboxano A2.\u200b Además, se activan las plaquetas, también bajo la dirección de la liberación local de tromboxano A2, y se forma un coágulo inmaduro en el sitio del sangrado. El vaso dañado expone el colágeno, que posteriormente causa la deposición de fibrina y la estabilización del coágulo. Son necesarias aproximadamente 24 horas para completar la fibrinización del coágulo.\n\nRespuesta cardiovascular\n\nInicialmente, el sistema cardiovascular responde ante un choque hipovolémico con el aumento de la frecuencia cardíaca, aumento de la contractilidad miocárdica, y la vasoconstricción de vasos sanguíneos periféricos. Esta respuesta se produce como consecuencia a un aumento en la liberación de noradrenalina y la disminución del tono vagal, regulada por los baroreceptores en el cayado aórtico, seno carotídeo, aurícula izquierda, y los vasos pulmonares. El sistema cardiovascular responde también con la redistribución de la sangre hacia el cerebro, corazón y los riñones y menos hacia la piel, músculo y tracto gastrointestinal.\n\nRespuesta renal\n\nEl sistema renal responde ante un choque hemorrágico con la estimulación de un aumento en la secreción de renina del aparato yuxtaglomerular. La renina convierte al angiotensinógeno en angiotensina I, que posteriormente es convertida a angiotensina II en los pulmones y el hígado.\u200b La angiotensina II tiene dos efectos principales que ayudarán a revertir el choque hemorrágico: vasoconstricción del músculo liso arteriolar, y la estimulación de la secreción de aldosterona por la corteza suprarrenal. La aldosterona es responsable de la reabsorción activa de sodio y consecuente conservación del agua.\u200b La activación del sistema renina-angiotensina es precoz y sensible a pérdidas hemáticas relativamente pequeñas.\u200b\n\nRespuesta neuro-endocrina\n\nEl sistema neuroendocrino responde ante el choque hemorrágico, provocando un aumento de circulante de hormona antidiurética (ADH).\u200b El ADH se libera de la glándula pituitaria posterior en respuesta a una disminución de la tensión arterial, detectados por barorreceptores, y una disminución en la concentración de sodio, detectados por osmorreceptores. La ADH conduce a un aumento de la reabsorción de agua y NaCl por el túbulo contorneado distal y los túbulos colectores.\n\nDiagnóstico\n\nDespués de la toma de la historia clínica y el examen físico del paciente, la conducta a seguir depende de la causa probable de la hipovolemia, así como la estabilidad de la condición del paciente.\n\nExámenes de laboratorio\n\nLos estudios iniciales de laboratorio suelen incluir el análisis del hemograma, los niveles de electrolitos, por ejemplo, sodio, potasio, cloro, bicarbonato, urea, creatinina y los niveles de glucosa, exámenes de coagulación como el tiempo de protrombina y el tiempo de tromboplastina parcial activado, gasometría, análisis de orina, especialmente en pacientes con traumatismos, y una prueba de embarazo en orina. Casi siempre se solicita un tipaje de la sangre y se prepara el banco de sangre para posibles transfusiones.\n\nEstudios de imagen\n\nLos pacientes con una marcada hipotensión arterial y/o en condiciones inestables son sometidos a medidas adecuadas de reanimación. Este tratamiento tiene prioridad sobre los estudios de imágenes y pueden incluir intervenciones quirúrgicas inmediatas.\nEn el paciente con trauma y signos y síntomas de hipovolemia se enfoca hacia la búsqueda de la fuente de la pérdida de sangre. El paciente atraumático con choque hipovolémico requiere un examen ecográfico en la sala de emergencia si se sospecha un aneurisma aórtico abdominal. Otros exámenes radiológicos útiles ante la sospecha de un aneurisma incluyen la ecocardiografía transesofágica, la aortografía, o la TAC de tórax. Si se sospecha una hemorragia gastrointestinal, los especialistas colocan una sonda nasogástrica debe ser colocado para realizar un lavado gástrico. Se solicita una radiografía de tórax en posición vertical si una úlcera perforada o el síndrome de Boerhaave resulta ser una posibilidad. La endoscopia se puede realizar, por lo general después de que el paciente ha sido hospitalizado, para definir con mayor precisión el origen del sangrado.\nSe indica una prueba de embarazo en todas las pacientes del sexo femenino en edad fértil. Si el paciente está embarazada y en estado de choque, se realiza una ecografía pélvica sin demora y puede ser llevada a una operación exploratoria. El choque hipovolémico secundario a un embarazo ectópico es común, incluso se han reportado embarazos ectópicos en pacientes con un test negativo de embarazo, aunque es un hallazgo muy infrecuente. Las radiografías simples se emplean cuando se sospechan fracturas óseas.\n\nTratamiento\n\nAunque el organismo puede compensar la pérdida de tensión por medio de reflejos autónomos, en ocasiones la pérdida de líquidos es tan extensa que es necesario aplicar un tratamiento para corregir la situación. El tratamiento médico inicial para el choque hipovolémico debe tener como finalidad el arreglo de tres áreas principales: maximizar el suministro de oxígeno—asegurando una adecuada ventilación, aumentando la saturación de oxígeno de la sangre, y restaurando el flujo sanguíneo; el control de la pérdida de sangre; y la restitución con líquidos.\n\nFármacos en el choque hipovolémico\n\nLa hipovolemia puede ser causa de varios equilibrios acidobásicos. La persona puede tener al principio una alcalosis respiratoria que podrá progresar en una acidosis metabólica. En estos casos se indica el uso de bicarbonato de sodio.\nPueden administrarse fármacos inotrópicos como la dopamina, dobutamina, epinefrina y norepinefrina a dosis bajas para mejorar el gasto cardíaco y la contractilidad del miocardio en pacientes con problemas de función cardiaca.\u200b Los vasodilatadores como la nitroglicerina dilatan las arterias coronarias para incrementar el aporte de oxígeno y reducir la poscarga. Aún existe controversia sobre el uso de los vasodilatadores y vasopresores.\u200b\nLa somatostatina es un polipéptido natural aislado del páncreas, el hipotálamo y las células epiteliales del estómago. La somatostatina disminuye el flujo sanguíneo a la red porta a causa de la vasoconstricción. Tiene efectos similares como la vasopresina, pero no causa vasoconstricción coronaria. Es rápidamente retirada de la circulación, con una vida media inicial de 1-3 minutos. En pacientes adultos se indica un bolo de 250\xa0μg intravenoso, seguido de 250-500\xa0μg/h en infusión continua por 2-5 días en caso de que sea efectiva.\u200b\n\nSupervisión hemodinámica\n\nLa hemodinámica es el análisis del flujo de sangre y de los factores que puede influenciarla. El estudio de la hemodinámica incluye el corazón y el sistema circulatorio, y los pulmones se incluyen a menudo también, pues la enfermedad que involucre en parte importante a los pulmones pueden inhibir la oxigenación de la sangre. Usar medidas tales como presión arterial ayudan a que el médico pueda recopilar la información sobre el sistema circulatorio de un paciente para determinar el grado de gravedad de una manera objetiva y esencial.\nPorque el sistema cardiovascular es tan crítico a la salud general, los perfiles hemodinámicos se hacen a menudo en situaciones donde la enfermedad del paciente ponga en tal riesgo su vida que al determinar dichos parámetros se haga una evaluación rápida y se ahorre tiempo en la atención primaria para mejorar su pronostico. Los elementos más utilizados para valorar a un paciente son los invasivos (colocación de una línea arterial, catéter de Swan-Ganz, catéter central, presión intra-abdominal, presión intracraneal) y los no invasivos (presión arterial, temperatura, frecuencia cardiaca, frecuencia respiratoria y más recientemente la escala análoga del dolor). Todos ellos aportan cifras que ayudan en el tratamiento así como el la toma de laboratoriales en sangre, o líquido específico.',