LongT5-XLarge-NSPCC

This model is a fine-tuned version of google/long-t5-tglobal-xl on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6843
  • Rouge1: 0.5138
  • Rouge2: 0.2297
  • Rougel: 0.2999
  • Rougelsum: 0.2995
  • Gen Len: 337.6809

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
3.6911 0.9960 188 0.7292 0.4665 0.1826 0.2611 0.2611 360.7021
0.8701 1.9974 377 0.6967 0.4886 0.2073 0.2805 0.2799 365.3298
0.7849 2.9987 566 0.6808 0.5116 0.2302 0.2995 0.2997 332.3191
0.7769 3.9841 752 0.6843 0.5138 0.2297 0.2999 0.2995 337.6809

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for scott156/LongT5-XLarge-NSPCC

Adapter
(2)
this model