馃獎SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing

Zeyinzi JiangChaojie MaoYulin PanZhen HanJingfeng Zhang

Alibaba Group

SCEdit is an efficient generative fine-tuning framework proposed by Alibaba TongYi Vision Intelligence Lab. This framework enhances the fine-tuning capabilities for text-to-image generation downstream tasks and enables quick adaptation to specific generative scenarios, saving 30%-50% of training memory costs compared to LoRA. Furthermore, it can be directly extended to controllable image generation tasks, requiring only 7.9% of the parameters that ControlNet needs for conditional generation and saving 30% of memory usage. It supports various conditional generation tasks including edge maps, depth maps, segmentation maps, poses, color maps, and image completion.

Use Models

pip install scepter
python -m scepter.tools.webui

BibTeX

@article{jiang2023scedit,
    title = {SCEdit: Efficient and Controllable Image Diffusion Generation via Skip Connection Editing},
    author = {Jiang, Zeyinzi and Mao, Chaojie and Pan, Yulin and Han, Zhen and Zhang, Jingfeng},
    year = {2023},
    journal = {arXiv preprint arXiv:2312.11392}  
}
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.