addison6

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4278
  • Wer: 0.3784

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
4.0707 1.03 500 2.8972 0.9998
1.8869 2.05 1000 1.3286 0.6772
1.218 3.08 1500 1.0999 0.5714
1.0183 4.11 2000 1.0781 0.5523
0.8743 5.13 2500 0.9991 0.4951
0.7561 6.16 3000 1.0861 0.4869
0.6883 7.19 3500 1.1915 0.4704
0.6185 8.21 4000 1.1553 0.4634
0.5761 9.24 4500 1.1144 0.4513
0.5315 10.27 5000 1.1818 0.4298
0.4982 11.29 5500 1.1973 0.4329
0.4719 12.32 6000 1.1456 0.4259
0.4369 13.35 6500 1.1701 0.4292
0.4083 14.37 7000 1.1929 0.4132
0.3886 15.4 7500 1.3307 0.4163
0.3752 16.43 8000 1.3405 0.4081
0.349 17.45 8500 1.3283 0.3952
0.3261 18.48 9000 1.2956 0.4128
0.3094 19.51 9500 1.2671 0.4004
0.3041 20.53 10000 1.3534 0.3964
0.2796 21.56 10500 1.3730 0.3899
0.25 22.59 11000 1.3952 0.3942
0.2303 23.61 11500 1.4792 0.3923
0.2321 24.64 12000 1.4228 0.3847
0.2 25.67 12500 1.4469 0.3837
0.2009 26.69 13000 1.4532 0.3820
0.195 27.72 13500 1.4329 0.3821
0.1804 28.75 14000 1.4265 0.3799
0.1713 29.77 14500 1.4278 0.3784

Framework versions

  • Transformers 4.17.0
  • Pytorch 2.0.0+cu118
  • Datasets 1.18.3
  • Tokenizers 0.13.2
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.