metadata
library_name: stable-baselines3
tags:
- MountainCar-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: DQN
results:
- metrics:
- type: mean_reward
value: '-112.60 +/- 24.36'
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: MountainCar-v0
type: MountainCar-v0
DQN Agent playing MountainCar-v0
This is a trained model of a DQN agent playing MountainCar-v0 using the stable-baselines3 library and the RL Zoo.
The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included.
Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo
# Download model and save it into the logs/ folder
python -m utils.load_from_hub --algo dqn --env MountainCar-v0 -orga sb3 -f logs/
python enjoy --algo dqn --env MountainCar-v0 -f logs/
Training (with the RL Zoo)
python train.py --algo dqn --env MountainCar-v0 -f logs/
# Upload the model and generate video (when possible)
python -m utils.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3