--- library_name: stable-baselines3 tags: - MountainCar-v0 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: DQN results: - metrics: - type: mean_reward value: -112.60 +/- 24.36 name: mean_reward task: type: reinforcement-learning name: reinforcement-learning dataset: name: MountainCar-v0 type: MountainCar-v0 --- # **DQN** Agent playing **MountainCar-v0** This is a trained model of a **DQN** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). The RL Zoo is a training framework for Stable Baselines3 reinforcement learning agents, with hyperparameter optimization and pre-trained agents included. ## Usage (with SB3 RL Zoo) RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo ``` # Download model and save it into the logs/ folder python -m utils.load_from_hub --algo dqn --env MountainCar-v0 -orga sb3 -f logs/ python enjoy --algo dqn --env MountainCar-v0 -f logs/ ``` ## Training (with the RL Zoo) ``` python train.py --algo dqn --env MountainCar-v0 -f logs/ # Upload the model and generate video (when possible) python -m utils.push_to_hub --algo dqn --env MountainCar-v0 -f logs/ -orga sb3 ```