Turkish Text Classification
This model is a fine-tune model of https://github.com/stefan-it/turkish-bert by using text classification data where there are 7 categories as follows
code_to_label={
'LABEL_0': 'dunya ',
'LABEL_1': 'ekonomi ',
'LABEL_2': 'kultur ',
'LABEL_3': 'saglik ',
'LABEL_4': 'siyaset ',
'LABEL_5': 'spor ',
'LABEL_6': 'teknoloji '}
Citation
Please cite the following papers if needed
@misc{yildirim2024finetuning,
title={Fine-tuning Transformer-based Encoder for Turkish Language Understanding Tasks},
author={Savas Yildirim},
year={2024},
eprint={2401.17396},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@book{yildirim2021mastering,
title={Mastering Transformers: Build state-of-the-art models from scratch with advanced natural language processing techniques},
author={Yildirim, Savas and Asgari-Chenaghlu, Meysam},
year={2021},
publisher={Packt Publishing Ltd}
}
Data
The following Turkish benchmark dataset is used for fine-tuning
https://www.kaggle.com/savasy/ttc4900
Quick Start
Bewgin with installing transformers as follows
pip install transformers
# Code:
# import libraries
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer, AutoModelForSequenceClassification
tokenizer= AutoTokenizer.from_pretrained("savasy/bert-turkish-text-classification")
# build and load model, it take time depending on your internet connection
model= AutoModelForSequenceClassification.from_pretrained("savasy/bert-turkish-text-classification")
# make pipeline
nlp=pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
# apply model
nlp("bla bla")
# [{'label': 'LABEL_2', 'score': 0.4753005802631378}]
code_to_label={
'LABEL_0': 'dunya ',
'LABEL_1': 'ekonomi ',
'LABEL_2': 'kultur ',
'LABEL_3': 'saglik ',
'LABEL_4': 'siyaset ',
'LABEL_5': 'spor ',
'LABEL_6': 'teknoloji '}
code_to_label[nlp("bla bla")[0]['label']]
# > 'kultur '
How the model was trained
## loading data for Turkish text classification
import pandas as pd
# https://www.kaggle.com/savasy/ttc4900
df=pd.read_csv("7allV03.csv")
df.columns=["labels","text"]
df.labels=pd.Categorical(df.labels)
traind_df=...
eval_df=...
# model
from simpletransformers.classification import ClassificationModel
import torch,sklearn
model_args = {
"use_early_stopping": True,
"early_stopping_delta": 0.01,
"early_stopping_metric": "mcc",
"early_stopping_metric_minimize": False,
"early_stopping_patience": 5,
"evaluate_during_training_steps": 1000,
"fp16": False,
"num_train_epochs":3
}
model = ClassificationModel(
"bert",
"dbmdz/bert-base-turkish-cased",
use_cuda=cuda_available,
args=model_args,
num_labels=7
)
model.train_model(train_df, acc=sklearn.metrics.accuracy_score)
For other training models please check https://simpletransformers.ai/
For the detailed usage of Turkish Text Classification please check python notebook
- Downloads last month
- 226
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.