File size: 1,707 Bytes
15ce941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
744de0d
15ce941
869a97c
15ce941
 
 
744de0d
869a97c
744de0d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from ssllm_hf import SSLLMForCausalLM, SSLLMConfig
import tiktoken
import torch
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download

# Initialize model with config
config = SSLLMConfig.from_pretrained('sausheong/ssllm_hf')
model = SSLLMForCausalLM(config)

# Download and load model weights
model_path = hf_hub_download(repo_id='sausheong/ssllm_hf', filename='model.safetensors')
state_dict = load_file(model_path)
model.load_state_dict(state_dict, strict=False)

# Setup device and eval mode
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device).eval()

# Initialize tokenizer
tokenizer = tiktoken.get_encoding('cl100k_base')

def generate_text(prompt, max_new_tokens=128, temperature=0.7, top_p=0.9, top_k=40):
    # Encode the prompt
    input_ids = torch.tensor([tokenizer.encode(prompt)], device=device)
    attention_mask = torch.ones_like(input_ids)
    
    # Generate with the model
    with torch.no_grad():
        outputs = model.generate(
            input_ids,
            attention_mask=attention_mask,
            max_new_tokens=max_new_tokens,
            do_sample=True,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            pad_token_id=100257,
            eos_token_id=100257,
        )
    
    # Decode only the new tokens
    new_tokens = outputs[0][input_ids.shape[1]:].tolist()
    generated = tokenizer.decode(new_tokens)
    
    print(f"{prompt}{generated}")
    print(f"\nTokens generated: {len(new_tokens)}")

if __name__ == "__main__":
    prompt = "In a small village nestled between mountains,"
    print(f"PROMPT: {prompt}\n--")
    generate_text(prompt)