Uploaded model

  • Developed by: satoyutaka
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.


sample of use

from transformers import (

AutoModelForCausalLM,

AutoTokenizer,

BitsAndBytesConfig,

)

import torch from tqdm import tqdm import json

HF_TOKEN = "Hugging Face Token"

model_name = "satoyutaka/llm-jp-3-13b-ft-2"

bnb_config = BitsAndBytesConfig(

load_in_4bit=True,

bnb_4bit_quant_type="nf4",

bnb_4bit_compute_dtype=torch.bfloat16,

bnb_4bit_use_double_quant=False,

)

datasets = []

with open("「elyza-tasks-100-TV_0.jsonl」のパスをご指定ください。", "r") as f:

item = ""

for line in f:

  line = line.strip()

  item += line

  if item.endswith("}"):

    datasets.append(json.loads(item))

    item = ""

results = []

for data in tqdm(datasets):

input = data["input"]

prompt = f"""### 指示 {input}

"""

tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)

with torch.no_grad():

  outputs = model.generate(

      tokenized_input,

      max_new_tokens=100,

      do_sample=False,

      repetition_penalty=1.2

  )[0]

output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

results.append({"task_id": data["task_id"], "input": input, "output": output})

import re

model_name = re.sub(".*/", "", model_name)

with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:

for result in results:

    json.dump(result, f, ensure_ascii=False)  # ensure_ascii=False for handling non-ASCII characters

    f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for satoyutaka/llm-jp-3-13b-ft-2

Finetuned
(1120)
this model