File size: 18,422 Bytes
473c3a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from __future__ import annotations
import logging
from collections import Counter
from itertools import chain
from tempfile import TemporaryDirectory
from typing import TYPE_CHECKING, TypeVar, cast
import lightning as pl
import numpy as np
import torch
from lightning.pytorch.callbacks import Callback, EarlyStopping
from sklearn.metrics import jaccard_score
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
from torch import nn
from tqdm import trange
from distiller.model2vec.inference import StaticModelPipeline, evaluate_single_or_multi_label
from distiller.model2vec.train.base import FinetunableStaticModel, TextDataset
if TYPE_CHECKING:
from lightning.pytorch.utilities.types import OptimizerLRScheduler
from tokenizers import Tokenizer
logger = logging.getLogger(__name__)
_RANDOM_SEED = 42
LabelType = TypeVar("LabelType", list[str], list[list[str]])
class StaticModelForClassification(FinetunableStaticModel):
def __init__(
self,
*,
vectors: torch.Tensor,
tokenizer: Tokenizer,
n_layers: int = 1,
hidden_dim: int = 512,
out_dim: int = 2,
pad_id: int = 0,
) -> None:
"""Initialize a standard classifier model."""
self.n_layers = n_layers
self.hidden_dim = hidden_dim
# Alias: Follows scikit-learn. Set to dummy classes
self.classes_: list[str] = [str(x) for x in range(out_dim)]
# multilabel flag will be set based on the type of `y` passed to fit.
self.multilabel: bool = False
super().__init__(vectors=vectors, out_dim=out_dim, pad_id=pad_id, tokenizer=tokenizer)
@property
def classes(self) -> np.ndarray:
"""Return all clasess in the correct order."""
return np.array(self.classes_)
def construct_head(self) -> nn.Sequential:
"""Constructs a simple classifier head."""
if self.n_layers == 0:
return nn.Sequential(nn.Linear(self.embed_dim, self.out_dim))
modules = [
nn.Linear(self.embed_dim, self.hidden_dim),
nn.ReLU(),
]
for _ in range(self.n_layers - 1):
modules.extend([nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU()])
modules.extend([nn.Linear(self.hidden_dim, self.out_dim)])
for module in modules:
if isinstance(module, nn.Linear):
nn.init.kaiming_uniform_(module.weight)
nn.init.zeros_(module.bias)
return nn.Sequential(*modules)
def predict(
self, X: list[str], show_progress_bar: bool = False, batch_size: int = 1024, threshold: float = 0.5
) -> np.ndarray:
"""
Predict labels for a set of texts.
In single-label mode, each prediction is a single class.
In multilabel mode, each prediction is a list of classes.
:param X: The texts to predict on.
:param show_progress_bar: Whether to show a progress bar.
:param batch_size: The batch size.
:param threshold: The threshold for multilabel classification.
:return: The predictions.
"""
pred = []
for batch in trange(0, len(X), batch_size, disable=not show_progress_bar):
logits = self._predict_single_batch(X[batch : batch + batch_size])
if self.multilabel:
probs = torch.sigmoid(logits)
mask = (probs > threshold).cpu().numpy()
pred.extend([self.classes[np.flatnonzero(row)] for row in mask])
else:
pred.extend([self.classes[idx] for idx in logits.argmax(dim=1).tolist()])
if self.multilabel:
# Return as object array to allow for lists of varying lengths.
return np.array(pred, dtype=object)
return np.array(pred)
@torch.no_grad()
def _predict_single_batch(self, X: list[str]) -> torch.Tensor:
input_ids = self.tokenize(X)
vectors, _ = self.forward(input_ids)
return vectors
def predict_proba(self, X: list[str], show_progress_bar: bool = False, batch_size: int = 1024) -> np.ndarray:
"""
Predict probabilities for each class.
In single-label mode, returns softmax probabilities.
In multilabel mode, returns sigmoid probabilities.
"""
pred = []
for batch in trange(0, len(X), batch_size, disable=not show_progress_bar):
logits = self._predict_single_batch(X[batch : batch + batch_size])
if self.multilabel:
pred.append(torch.sigmoid(logits).cpu().numpy())
else:
pred.append(torch.softmax(logits, dim=1).cpu().numpy())
return np.concatenate(pred, axis=0)
def fit(
self,
X: list[str],
y: LabelType,
learning_rate: float = 1e-3,
batch_size: int | None = None,
min_epochs: int | None = None,
max_epochs: int | None = -1,
early_stopping_patience: int | None = 5,
test_size: float = 0.1,
device: str = "auto",
X_val: list[str] | None = None,
y_val: LabelType | None = None,
) -> StaticModelForClassification:
"""
Fit a model.
This function creates a Lightning Trainer object and fits the model to the data.
It supports both single-label and multi-label classification.
We use early stopping. After training, the weights of the best model are loaded back into the model.
This function seeds everything with a seed of 42, so the results are reproducible.
It also splits the data into a train and validation set, again with a random seed.
If `X_val` and `y_val` are not provided, the function will automatically
split the training data into a train and validation set using `test_size`.
:param X: The texts to train on.
:param y: The labels to train on. If the first element is a list, multi-label classification is assumed.
:param learning_rate: The learning rate.
:param batch_size: The batch size. If None, a good batch size is chosen automatically.
:param min_epochs: The minimum number of epochs to train for.
:param max_epochs: The maximum number of epochs to train for.
If this is -1, the model trains until early stopping is triggered.
:param early_stopping_patience: The patience for early stopping.
If this is None, early stopping is disabled.
:param test_size: The test size for the train-test split.
:param device: The device to train on. If this is "auto", the device is chosen automatically.
:param X_val: The texts to be used for validation.
:param y_val: The labels to be used for validation.
:return: The fitted model.
:raises ValueError: If either X_val or y_val are provided, but not both.
"""
pl.seed_everything(_RANDOM_SEED)
logger.info("Re-initializing model.")
# Determine whether the task is multilabel based on the type of y.
self._initialize(y)
if (X_val is not None) != (y_val is not None):
msg = "Both X_val and y_val must be provided together, or neither."
raise ValueError(msg)
if X_val is not None and y_val is not None:
# Additional check to ensure y_val is of the same type as y
if type(y_val[0]) != type(y[0]):
msg = "X_val and y_val must be of the same type as X and y."
raise ValueError(msg)
train_texts = X
train_labels = y
validation_texts = X_val
validation_labels = y_val
else:
train_texts, validation_texts, train_labels, validation_labels = self._train_test_split(
X,
y,
test_size=test_size,
)
if batch_size is None:
# Set to a multiple of 32
base_number = int(min(max(1, (len(train_texts) / 30) // 32), 16))
batch_size = int(base_number * 32)
logger.info("Batch size automatically set to %d.", batch_size)
logger.info("Preparing train dataset.")
train_dataset = self._prepare_dataset(train_texts, train_labels)
logger.info("Preparing validation dataset.")
val_dataset = self._prepare_dataset(validation_texts, validation_labels)
c = _ClassifierLightningModule(self, learning_rate=learning_rate)
n_train_batches = len(train_dataset) // batch_size
callbacks: list[Callback] = []
if early_stopping_patience is not None:
callback = EarlyStopping(monitor="val_accuracy", mode="max", patience=early_stopping_patience)
callbacks.append(callback)
# If the dataset is small, we check the validation set every epoch.
# If the dataset is large, we check the validation set every 250 batches.
if n_train_batches < 250:
val_check_interval = None
check_val_every_epoch = 1
else:
val_check_interval = max(250, 2 * len(val_dataset) // batch_size)
check_val_every_epoch = None
with TemporaryDirectory() as tempdir:
trainer = pl.Trainer(
min_epochs=min_epochs,
max_epochs=max_epochs,
callbacks=callbacks,
val_check_interval=val_check_interval,
check_val_every_n_epoch=check_val_every_epoch,
accelerator=device,
default_root_dir=tempdir,
)
trainer.fit(
c,
train_dataloaders=train_dataset.to_dataloader(shuffle=True, batch_size=batch_size),
val_dataloaders=val_dataset.to_dataloader(shuffle=False, batch_size=batch_size),
)
best_model_path = trainer.checkpoint_callback.best_model_path # type: ignore
best_model_weights = torch.load(best_model_path, weights_only=True)
state_dict = {}
for weight_name, weight in best_model_weights["state_dict"].items():
state_dict[weight_name.removeprefix("model.")] = weight
self.load_state_dict(state_dict)
self.eval()
return self
def evaluate(
self, X: list[str], y: LabelType, batch_size: int = 1024, threshold: float = 0.5, output_dict: bool = False
) -> str | dict[str, dict[str, float]]:
"""
Evaluate the classifier on a given dataset using scikit-learn's classification report.
:param X: The texts to predict on.
:param y: The ground truth labels.
:param batch_size: The batch size.
:param threshold: The threshold for multilabel classification.
:param output_dict: Whether to output the classification report as a dictionary.
:return: A classification report.
"""
self.eval()
predictions = self.predict(X, show_progress_bar=True, batch_size=batch_size, threshold=threshold)
return evaluate_single_or_multi_label(predictions=predictions, y=y, output_dict=output_dict)
def _initialize(self, y: LabelType) -> None:
"""
Sets the output dimensionality, the classes, and initializes the head.
:param y: The labels.
:raises ValueError: If the labels are inconsistent.
"""
if isinstance(y[0], (str, int)):
# Check if all labels are strings or integers.
if not all(isinstance(label, (str, int)) for label in y):
msg = "Inconsistent label types in y. All labels must be strings or integers."
raise ValueError(msg)
self.multilabel = False
classes = sorted(set(y))
else:
# Check if all labels are lists or tuples.
if not all(isinstance(label, (list, tuple)) for label in y):
msg = "Inconsistent label types in y. All labels must be lists or tuples."
raise ValueError(msg)
self.multilabel = True
classes = sorted(set(chain.from_iterable(y)))
self.classes_ = classes
self.out_dim = len(self.classes_) # Update output dimension
self.head = self.construct_head()
self.embeddings = nn.Embedding.from_pretrained(self.vectors.clone(), freeze=False, padding_idx=self.pad_id)
self.w = self.construct_weights()
self.train()
def _prepare_dataset(self, X: list[str], y: LabelType, max_length: int = 512) -> TextDataset:
"""
Prepare a dataset. For multilabel classification, each target is converted into a multi-hot vector.
:param X: The texts.
:param y: The labels.
:param max_length: The maximum length of the input.
:return: A TextDataset.
"""
# This is a speed optimization.
# assumes a mean token length of 10, which is really high, so safe.
truncate_length = max_length * 10
X = [x[:truncate_length] for x in X]
tokenized: list[list[int]] = [
encoding.ids[:max_length] for encoding in self.tokenizer.encode_batch_fast(X, add_special_tokens=False)
]
if self.multilabel:
# Convert labels to multi-hot vectors
num_classes = len(self.classes_)
labels_tensor = torch.zeros(len(y), num_classes, dtype=torch.float)
mapping = {label: idx for idx, label in enumerate(self.classes_)}
for i, sample_labels in enumerate(y):
indices = [mapping[label] for label in sample_labels]
labels_tensor[i, indices] = 1.0
else:
labels_tensor = torch.tensor([self.classes_.index(label) for label in cast("list[str]", y)], dtype=torch.long)
return TextDataset(tokenized, labels_tensor)
def _train_test_split(
self,
X: list[str],
y: list[str] | list[list[str]],
test_size: float,
) -> tuple[list[str], list[str], LabelType, LabelType]:
"""
Split the data.
For single-label classification, stratification is attempted (if possible).
For multilabel classification, a random split is performed.
"""
if not self.multilabel:
label_counts = Counter(y)
if min(label_counts.values()) < 2:
logger.info("Some classes have less than 2 samples. Stratification is disabled.")
return train_test_split(X, y, test_size=test_size, random_state=42, shuffle=True)
return train_test_split(X, y, test_size=test_size, random_state=42, shuffle=True, stratify=y)
# Multilabel classification does not support stratification.
return train_test_split(X, y, test_size=test_size, random_state=42, shuffle=True)
def to_pipeline(self) -> StaticModelPipeline:
"""Convert the model to an sklearn pipeline."""
static_model = self.to_static_model()
random_state = np.random.RandomState(_RANDOM_SEED)
n_items = len(self.classes)
X = random_state.randn(n_items, static_model.dim)
y = self.classes
converted = make_pipeline(MLPClassifier(hidden_layer_sizes=(self.hidden_dim,) * self.n_layers))
converted.fit(X, y)
mlp_head: MLPClassifier = converted[-1]
for index, layer in enumerate([module for module in self.head if isinstance(module, nn.Linear)]):
mlp_head.coefs_[index] = layer.weight.detach().cpu().numpy().T
mlp_head.intercepts_[index] = layer.bias.detach().cpu().numpy()
# Below is necessary to ensure that the converted model works correctly.
# In scikit-learn, a binary classifier only has a single vector of output coefficients
# and a single intercept. We use two output vectors.
# To convert correctly, we need to set the outputs correctly, and fix the activation function.
# Make sure n_outputs is set to > 1.
mlp_head.n_outputs_ = self.out_dim
# Set to softmax or sigmoid
mlp_head.out_activation_ = "logistic" if self.multilabel else "softmax"
return StaticModelPipeline(static_model, converted)
class _ClassifierLightningModule(pl.LightningModule):
def __init__(self, model: StaticModelForClassification, learning_rate: float) -> None:
"""Initialize the LightningModule."""
super().__init__()
self.model = model
self.learning_rate = learning_rate
self.loss_function = nn.CrossEntropyLoss() if not model.multilabel else nn.BCEWithLogitsLoss()
def forward(self, x: torch.Tensor) -> torch.Tensor:
"""Simple forward pass."""
return self.model(x)
def training_step(self, batch: tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
"""Training step using cross-entropy loss for single-label and binary cross-entropy for multilabel training."""
x, y = batch
head_out, _ = self.model(x)
loss = self.loss_function(head_out, y)
self.log("train_loss", loss)
return loss
def validation_step(self, batch: tuple[torch.Tensor, torch.Tensor], batch_idx: int) -> torch.Tensor:
"""Validation step computing loss and accuracy."""
x, y = batch
head_out, _ = self.model(x)
loss = self.loss_function(head_out, y)
if self.model.multilabel:
preds = (torch.sigmoid(head_out) > 0.5).float()
# Multilabel accuracy is defined as the Jaccard score averaged over samples.
accuracy = jaccard_score(y.cpu(), preds.cpu(), average="samples")
else:
accuracy = (head_out.argmax(dim=1) == y).float().mean()
self.log("val_loss", loss)
self.log("val_accuracy", accuracy, prog_bar=True)
return loss
def configure_optimizers(self) -> OptimizerLRScheduler:
"""Configure optimizer and learning rate scheduler."""
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.learning_rate)
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode="min",
factor=0.5,
patience=3,
min_lr=1e-6,
threshold=0.03,
threshold_mode="rel",
)
return {"optimizer": optimizer, "lr_scheduler": {"scheduler": scheduler, "monitor": "val_loss"}}
|