File size: 16,309 Bytes
473c3a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
from __future__ import annotations
import math
import os
from logging import getLogger
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import TYPE_CHECKING, Any, Union, overload
import numpy as np
from joblib import delayed
from tqdm import tqdm
from .quantization import DType, quantize_and_reduce_dim
from .utils import ProgressParallel, load_local_model
if TYPE_CHECKING:
from collections.abc import Iterator, Sequence
from tokenizers import Encoding, Tokenizer
PathLike = Union[Path, str]
logger = getLogger(__name__)
class StaticModel:
def __init__(
self,
vectors: np.ndarray,
tokenizer: Tokenizer,
config: dict[str, Any] | None = None,
normalize: bool | None = None,
base_model_name: str | None = None,
language: list[str] | None = None,
) -> None:
"""
Initialize the StaticModel.
:param vectors: The vectors to use.
:param tokenizer: The Transformers tokenizer to use.
:param config: Any metadata config.
:param normalize: Whether to normalize the embeddings.
:param base_model_name: The used base model name. Used for creating a model card.
:param language: The language of the model. Used for creating a model card.
:raises: ValueError if the number of tokens does not match the number of vectors.
"""
super().__init__()
tokens, _ = zip(*sorted(tokenizer.get_vocab().items(), key=lambda x: x[1]), strict=False)
self.tokens = tokens
self.embedding = vectors
if len(tokens) != vectors.shape[0]:
msg = f"Number of tokens ({len(tokens)}) does not match number of vectors ({vectors.shape[0]})"
raise ValueError(msg)
self.tokenizer = tokenizer
self.unk_token_id: int | None
if hasattr(self.tokenizer.model, "unk_token") and self.tokenizer.model.unk_token is not None:
self.unk_token_id = tokenizer.get_vocab()[self.tokenizer.model.unk_token]
else:
self.unk_token_id = None # pragma: no cover # Doesn't actually happen, but can happen.
self.median_token_length = int(np.median([len(token) for token in self.tokens]))
self.config = config or {}
self.base_model_name = base_model_name
self.language = language
if hasattr(self.tokenizer, "encode_batch_fast"):
self._can_encode_fast = True
else:
self._can_encode_fast = False
if normalize is not None:
self.normalize = normalize
else:
self.normalize = self.config.get("normalize", False)
@property
def dim(self) -> int:
"""Get the dimension of the model."""
return self.embedding.shape[1]
@property
def normalize(self) -> bool:
"""
Get the normalize value.
:return: The normalize value.
"""
return self._normalize
@normalize.setter
def normalize(self, value: bool) -> None:
"""Update the config if the value of normalize changes."""
config_normalize = self.config.get("normalize")
self._normalize = value
if config_normalize is not None and value != config_normalize:
logger.warning(
f"Set normalization to `{value}`, which does not match config value `{config_normalize}`. Updating config."
)
self.config["normalize"] = value
def save_pretrained(self, path: PathLike, model_name: str | None = None, subfolder: str | None = None) -> None:
"""
Save the pretrained model.
:param path: The path to save to.
:param model_name: The model name to use in the Model Card.
:param subfolder: The subfolder to save to.
"""
from .hf_utils import save_pretrained
save_pretrained(
folder_path=Path(path),
embeddings=self.embedding,
tokenizer=self.tokenizer,
config=self.config,
base_model_name=self.base_model_name,
language=self.language,
model_name=model_name,
subfolder=subfolder,
)
def tokenize(self, sentences: Sequence[str], max_length: int | None = None) -> list[list[int]]:
"""
Tokenize a list of sentences.
:param sentences: The sentences to tokenize.
:param max_length: The maximum length of the sentences in tokens. If this is None, sequences
are not truncated.
:return: A list of list of tokens.
"""
if max_length is not None:
m = max_length * self.median_token_length
sentences = [sentence[:m] for sentence in sentences]
if self._can_encode_fast:
encodings: list[Encoding] = self.tokenizer.encode_batch_fast(sentences, add_special_tokens=False)
else:
encodings = self.tokenizer.encode_batch(sentences, add_special_tokens=False)
encodings_ids = [encoding.ids for encoding in encodings]
if self.unk_token_id is not None:
# NOTE: Remove the unknown token: necessary for word-level models.
encodings_ids = [
[token_id for token_id in token_ids if token_id != self.unk_token_id] for token_ids in encodings_ids
]
if max_length is not None:
encodings_ids = [token_ids[:max_length] for token_ids in encodings_ids]
return encodings_ids
@classmethod
def from_pretrained(
cls: type[StaticModel],
path: PathLike,
token: str | None = None,
normalize: bool | None = None,
subfolder: str | None = None,
quantize_to: str | DType | None = None,
dimensionality: int | None = None,
) -> StaticModel:
"""
Load a StaticModel from a local path or huggingface hub path.
NOTE: if you load a private model from the huggingface hub, you need to pass a token.
:param path: The path to load your static model from.
:param token: The huggingface token to use.
:param normalize: Whether to normalize the embeddings.
:param subfolder: The subfolder to load from.
:param quantize_to: The dtype to quantize the model to. If None, no quantization is done.
If a string is passed, it is converted to a DType.
:param dimensionality: The dimensionality of the model. If this is None, use the dimensionality of the model.
This is useful if you want to load a model with a lower dimensionality.
Note that this only applies if you have trained your model using mrl or PCA.
:return: A StaticModel.
"""
from .hf_utils import load_pretrained
embeddings, tokenizer, config, metadata = load_pretrained(
folder_or_repo_path=path,
token=token,
from_sentence_transformers=False,
subfolder=subfolder,
)
embeddings = quantize_and_reduce_dim(
embeddings=embeddings,
quantize_to=quantize_to,
dimensionality=dimensionality,
)
return cls(
embeddings,
tokenizer,
config,
normalize=normalize,
base_model_name=metadata.get("base_model"),
language=metadata.get("language"),
)
@classmethod
def from_sentence_transformers(
cls: type[StaticModel],
path: PathLike,
token: str | None = None,
normalize: bool | None = None,
quantize_to: str | DType | None = None,
dimensionality: int | None = None,
) -> StaticModel:
"""
Load a StaticModel trained with sentence transformers from a local path or huggingface hub path.
NOTE: if you load a private model from the huggingface hub, you need to pass a token.
:param path: The path to load your static model from.
:param token: The huggingface token to use.
:param normalize: Whether to normalize the embeddings.
:param quantize_to: The dtype to quantize the model to. If None, no quantization is done.
If a string is passed, it is converted to a DType.
:param dimensionality: The dimensionality of the model. If this is None, use the dimensionality of the model.
This is useful if you want to load a model with a lower dimensionality.
Note that this only applies if you have trained your model using mrl or PCA.
:return: A StaticModel.
"""
from .hf_utils import load_pretrained
embeddings, tokenizer, config, metadata = load_pretrained(
folder_or_repo_path=path,
token=token,
from_sentence_transformers=True,
subfolder=None,
)
embeddings = quantize_and_reduce_dim(
embeddings=embeddings,
quantize_to=quantize_to,
dimensionality=dimensionality,
)
return cls(
embeddings,
tokenizer,
config,
normalize=normalize,
base_model_name=metadata.get("base_model"),
language=metadata.get("language"),
)
@overload
def encode_as_sequence(
self,
sentences: str,
max_length: int | None = None,
batch_size: int = 1024,
show_progress_bar: bool = False,
use_multiprocessing: bool = True,
multiprocessing_threshold: int = 10_000,
) -> np.ndarray: ...
@overload
def encode_as_sequence(
self,
sentences: list[str],
max_length: int | None = None,
batch_size: int = 1024,
show_progress_bar: bool = False,
use_multiprocessing: bool = True,
multiprocessing_threshold: int = 10_000,
) -> list[np.ndarray]: ...
def encode_as_sequence(
self,
sentences: str | list[str],
max_length: int | None = None,
batch_size: int = 1024,
show_progress_bar: bool = False,
use_multiprocessing: bool = True,
multiprocessing_threshold: int = 10_000,
) -> list[np.ndarray] | np.ndarray:
"""
Encode a list of sentences as a list of numpy arrays of tokens.
This is useful if you want to use the tokens for further processing, or if you want to do sequence
modeling.
Note that if you just want the mean, you should use the `encode` method.
This is about twice as slow.
Sentences that do not contain any tokens will be turned into an empty array.
NOTE: the input type is currently underspecified. The actual input type is `Sequence[str] | str`, but this
is not possible to implement in python typing currently.
:param sentences: The list of sentences to encode.
:param max_length: The maximum length of the sentences. Any tokens beyond this length will be truncated.
If this is None, no truncation is done.
:param batch_size: The batch size to use.
:param show_progress_bar: Whether to show the progress bar.
:param use_multiprocessing: Whether to use multiprocessing.
By default, this is enabled for inputs > multiprocessing_threshold sentences and disabled otherwise.
:param multiprocessing_threshold: The threshold in number of sentences for using multiprocessing.
:return: The encoded sentences with an embedding per token.
"""
was_single = False
if isinstance(sentences, str):
sentences = [sentences]
was_single = True
# Prepare all batches
sentence_batches = list(self._batch(sentences, batch_size))
total_batches = math.ceil(len(sentences) / batch_size)
# Use joblib for multiprocessing if requested, and if we have enough sentences
if use_multiprocessing and len(sentences) > multiprocessing_threshold:
# Disable parallelism for tokenizers
os.environ["TOKENIZERS_PARALLELISM"] = "false"
results = ProgressParallel(n_jobs=-1, use_tqdm=show_progress_bar, total=total_batches)(
delayed(self._encode_batch_as_sequence)(batch, max_length) for batch in sentence_batches
)
out_array: list[np.ndarray] = []
for r in results:
out_array.extend(r)
else:
out_array = []
for batch in tqdm(
sentence_batches,
total=total_batches,
disable=not show_progress_bar,
):
out_array.extend(self._encode_batch_as_sequence(batch, max_length))
if was_single:
return out_array[0]
return out_array
def _encode_batch_as_sequence(self, sentences: Sequence[str], max_length: int | None) -> list[np.ndarray]:
"""Encode a batch of sentences as a sequence."""
ids = self.tokenize(sentences=sentences, max_length=max_length)
out: list[np.ndarray] = []
for id_list in ids:
if id_list:
out.append(self.embedding[id_list])
else:
out.append(np.zeros((0, self.dim)))
return out
def encode(
self,
sentences: Sequence[str],
show_progress_bar: bool = False,
max_length: int | None = 512,
batch_size: int = 1024,
use_multiprocessing: bool = True,
multiprocessing_threshold: int = 10_000,
**kwargs: Any,
) -> np.ndarray:
"""
Encode a list of sentences.
This function encodes a list of sentences by averaging the word embeddings of the tokens in the sentence.
For ease of use, we don't batch sentences together.
NOTE: the return type is currently underspecified. In the case of a single string, this returns a 1D array,
but in the case of a list of strings, this returns a 2D array. Not possible to implement in numpy currently.
:param sentences: The list of sentences to encode. You can also pass a single sentence.
:param show_progress_bar: Whether to show the progress bar.
:param max_length: The maximum length of the sentences. Any tokens beyond this length will be truncated.
If this is None, no truncation is done.
:param batch_size: The batch size to use.
:param use_multiprocessing: Whether to use multiprocessing.
By default, this is enabled for inputs > multiprocessing_threshold sentences and disabled otherwise.
:param multiprocessing_threshold: The threshold in number of sentences for using multiprocessing.
:param **kwargs: Any additional arguments. These are ignored.
:return: The encoded sentences. If a single sentence was passed, a vector is returned.
"""
was_single = False
if isinstance(sentences, str):
sentences = [sentences]
was_single = True
# Prepare all batches
sentence_batches = list(self._batch(sentences, batch_size))
total_batches = math.ceil(len(sentences) / batch_size)
# Use joblib for multiprocessing if requested, and if we have enough sentences
if use_multiprocessing and len(sentences) > multiprocessing_threshold:
# Disable parallelism for tokenizers
os.environ["TOKENIZERS_PARALLELISM"] = "false"
results = ProgressParallel(n_jobs=-1, use_tqdm=show_progress_bar, total=total_batches)(
delayed(self._encode_batch)(batch, max_length) for batch in sentence_batches
)
out_array = np.concatenate(results, axis=0)
else:
# Don't use multiprocessing
out_arrays: list[np.ndarray] = []
for batch in tqdm(
sentence_batches,
total=total_batches,
disable=not show_progress_bar,
):
out_arrays.append(self._encode_batch(batch, max_length))
out_array = np.concatenate(out_arrays, axis=0)
if was_single:
return out_array[0]
return out_array
def _encode_batch(self, sentences: Sequence[str], max_length: int | None) -> np.ndarray:
"""Encode a batch of sentences."""
ids = self.tokenize(sentences=sentences, max_length=max_length)
out: list[np.ndarray] = []
for id_list in ids:
if id_list:
out.append(self.embedding[id_list].mean(0))
else:
out.append(np.zeros(self.dim))
out_array = np.stack(out)
if self.normalize:
norm = np.linalg.norm(out_array, axis=1, keepdims=True) + 1e-32
out_array = out_array / norm
return out_array
@staticmethod
def _batch(sentences: Sequence[str], batch_size: int) -> Iterator[Sequence[str]]:
"""Batch the sentences into equal-sized."""
return (sentences[i : i + batch_size] for i in range(0, len(sentences), batch_size))
def push_to_hub(
self, repo_id: str, private: bool = False, token: str | None = None, subfolder: str | None = None
) -> None:
"""
Push the model to the huggingface hub.
NOTE: you need to pass a token if you are pushing a private model.
:param repo_id: The repo id to push to.
:param private: Whether the repo, if created is set to private.
If the repo already exists, this doesn't change the visibility.
:param token: The huggingface token to use.
:param subfolder: The subfolder to push to.
"""
from .hf_utils import push_folder_to_hub
with TemporaryDirectory() as temp_dir:
self.save_pretrained(temp_dir, model_name=repo_id)
push_folder_to_hub(Path(temp_dir), subfolder=subfolder, repo_id=repo_id, private=private, token=token)
@classmethod
def load_local(cls: type[StaticModel], path: PathLike) -> StaticModel:
"""
Loads a model from a local path.
You should only use this code path if you are concerned with start-up time.
Loading via the `from_pretrained` method is safer, and auto-downloads, but
also means we import a whole bunch of huggingface code that we don't need.
Additionally, huggingface will check the most recent version of the model,
which can be slow.
:param path: The path to load the model from. The path is a directory saved by the
`save_pretrained` method.
:return: A StaticModel
:raises: ValueError if the path is not a directory.
"""
path = Path(path)
if not path.is_dir():
msg = f"Path {path} is not a directory."
raise ValueError(msg)
embeddings, tokenizer, config = load_local_model(path)
return StaticModel(embeddings, tokenizer, config)
|