File size: 5,251 Bytes
645fa57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Inference"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "from transformers import(\n",
    "    EncoderDecoderModel,\n",
    "    PreTrainedTokenizerFast,\n",
    "    # XLMRobertaTokenizerFast,\n",
    "    BertJapaneseTokenizer,\n",
    "    BertTokenizerFast,\n",
    ")\n",
    "\n",
    "import torch\n",
    "import csv"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "The tokenizer class you load from this checkpoint is not the same type as the class this function is called from. It may result in unexpected tokenization. \n",
      "The tokenizer class you load from this checkpoint is 'GPT2Tokenizer'. \n",
      "The class this function is called from is 'PreTrainedTokenizerFast'.\n"
     ]
    }
   ],
   "source": [
    "encoder_model_name = \"cl-tohoku/bert-base-japanese-v2\"\n",
    "decoder_model_name = \"skt/kogpt2-base-v2\"\n",
    "\n",
    "src_tokenizer = BertJapaneseTokenizer.from_pretrained(encoder_model_name)\n",
    "trg_tokenizer = PreTrainedTokenizerFast.from_pretrained(decoder_model_name)\n",
    "model = EncoderDecoderModel.from_pretrained(\"./dump/best_model\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'길가메시 토벌전'"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "text = \"ギルガメッシュ討伐戦\"\n",
    "# text = \"ギルガメッシュ討伐戦に行ってきます。一緒に行きましょうか?\"\n",
    "\n",
    "def translate(text_src):\n",
    "    embeddings = src_tokenizer(text_src, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
    "    embeddings = {k: v for k, v in embeddings.items()}\n",
    "    output = model.generate(**embeddings)[0, 1:-1]\n",
    "    text_trg = trg_tokenizer.decode(output.cpu())\n",
    "    return text_trg\n",
    "\n",
    "print(translate(text))"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Evaluation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction\n",
    "smoothie = SmoothingFunction().method4"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "Testing:   0%|          | 0/267 [00:00<?, ?it/s]/home/tikim/.local/lib/python3.8/site-packages/transformers/generation/utils.py:1288: UserWarning: Using `max_length`'s default (20) to control the generation length. This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
      "  warnings.warn(\n",
      "Testing: 100%|██████████| 267/267 [01:01<00:00,  4.34it/s]"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Bleu score: 0.9619225967540574\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\n"
     ]
    }
   ],
   "source": [
    "from tqdm import tqdm\n",
    "from statistics import mean\n",
    "\n",
    "bleu = []\n",
    "f1 = []\n",
    "\n",
    "DATA_ROOT = './output'\n",
    "FILE_JP_KO_TEST = 'ja_ko_test.csv'\n",
    "FILE_FFAC_TEST = 'ffac_test.csv'\n",
    "\n",
    "with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_FFAC_TEST}', 'r') as fd:\n",
    "# with torch.no_grad(), open(f'{DATA_ROOT}/{FILE_JP_KO_TEST}', 'r') as fd:\n",
    "    reader = csv.reader(fd)\n",
    "    next(reader)\n",
    "    datas = [row for row in reader]    \n",
    "\n",
    "    for data in tqdm(datas, \"Testing\"):\n",
    "        input, label = data\n",
    "        embeddings = src_tokenizer(input, return_attention_mask=False, return_token_type_ids=False, return_tensors='pt')\n",
    "        embeddings = {k: v for k, v in embeddings.items()}\n",
    "        with torch.no_grad():\n",
    "            output = model.generate(**embeddings)[0, 1:-1]\n",
    "        preds = trg_tokenizer.decode(output.cpu())\n",
    "\n",
    "        bleu.append(sentence_bleu([label.split()], preds.split(), weights=[1,0,0,0], smoothing_function=smoothie))\n",
    "\n",
    "print(f\"Bleu score: {mean(bleu)}\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.8.10"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}