edobobo's picture
Update README.md
8f68678 verified
|
raw
history blame
15.3 kB
metadata
license: apache-2.0
pipeline_tag: text-generation
language:
  - it
  - en
tags:
  - sft
  - dpo
base_model:
  - sapienzanlp/Minerva-7B-base-v1.0
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
  - Babelscape/ALERT
  - efederici/evol-dpo-ita
inference:
  parameters:
    temperature: 0.4
    do_sample: true
widget:
  - text: Chi sei?
    example_title: Example 1
library_name: transformers

Model Card for Minerva-7B-instruct-v1.0

Minerva is the first family of LLMs pretrained from scratch on Italian developed by Sapienza NLP in collaboration with Future Artificial Intelligence Research (FAIR) and CINECA. Notably, the Minerva models are truly-open (data and model) Italian-English LLMs, with approximately half of the pretraining data including Italian text.

Description

This is the model card for Minerva-7B-instruct-v1.0, a 7 billion parameter model trained on almost 2.5 trillion tokens (1.14 trillion in Italian, 1.14 trillion in English and 200 billion in code).

This model is part of the Minerva LLM family:

🚨⚠️🚨 Bias, Risks, and Limitations 🚨⚠️🚨

This section identifies foreseeable harms and misunderstandings.

This is a chat foundation model, subject to some degree of alignment. However, the model may still:

  • Overrepresent some viewpoints and underrepresent others
  • Contain stereotypes
  • Contain personal information
  • Generate:
    • Racist and sexist content
    • Hateful, abusive, or violent language
    • Discriminatory or prejudicial language
    • Content that may not be appropriate for all settings, including sexual content
  • Make errors, including producing incorrect information or historical facts as if it were factual
  • Generate irrelevant or repetitive outputs

We are aware of the biases and potential problematic/toxic content that current pretrained large language models exhibit: more specifically, as probabilistic models of (Italian and English) languages, they reflect and amplify the biases of their training data. For more information about this issue, please refer to our survey:

How to use Minerva with Hugging Face transformers

import transformers
import torch

model_id = "sapienzanlp/Minerva-7B-instruct-v1.0"

# Initialize the pipeline.
pipeline = transformers.pipeline(
    model=model_id,
    model_kwargs={"torch_dtype": torch.bfloat16},
    device_map="auto",
)

# Input text for the model.
input_conv = [{"role": "user", "content": "Qualle è la capitale dell'Italia?"}]

# Compute the outputs.
output = pipeline(
  input_conv,
  max_new_tokens=128,
)

output
[{'generated_text': "La capitale dell'Italia è la città di Roma, che si trova a [...]"}]

Model Architecture

Minerva-7B-base-v1.0 is a Transformer model based on the Mistral architecture. Please look at the configuration file for a detailed breakdown of the hyperparameters we chose for this model.

The Minerva LLM family is composed of:

Model Name Tokens Layers Hidden Size Attention Heads KV Heads Sliding Window Max Context Length
Minerva-350M-base-v1.0 70B (35B it + 35B en) 16 1152 16 4 2048 16384
Minerva-1B-base-v1.0 200B (100B it + 100B en) 16 2048 16 4 2048 16384
Minerva-3B-base-v1.0 660B (330B it + 330B en) 32 2560 32 8 2048 16384
Minerva-7B-base-v1.0 2.48T (1.14T it + 1.14T en + 200B code) 32 4096 32 8 None 4096

Model Training

Minerva-7B-base-v1.0 was trained using llm-foundry 0.8.0 from MosaicML. The hyperparameters used are the following:

Model Name Optimizer lr betas eps weight decay Scheduler Warmup Steps Batch Size (Tokens) Total Steps
Minerva-350M-base-v1.0 Decoupled AdamW 2e-4 (0.9, 0.95) 1e-8 0.0 Cosine 2% 4M 16,690
Minerva-1B-base-v1.0 Decoupled AdamW 2e-4 (0.9, 0.95) 1e-8 0.0 Cosine 2% 4M 47,684
Minerva-3B-base-v1.0 Decoupled AdamW 2e-4 (0.9, 0.95) 1e-8 0.0 Cosine 2% 4M 157,357
Minerva-7B-base-v1.0 AdamW 3e-4 (0.9, 0.95) 1e-5 0.1 Cosine 2000 4M 591,558

SFT Training

The SFT model was trained using Llama-Factory. The data mix was the following:

Dataset Source Code English Italian
Alpaca-cleaned Link 0 50,000 0
Databricks-dolly-15k Link 0 15,011 0
No-robots Link 0 9,499 0
OASST2 Link 0 29,000 528
Tower-blocks_it Link 0 0 7,276
Glaive-code-assistant Link 100,000 0 0
Alpaca-python Link 20,000 0 0
WizardLM Link 0 29,810 0
LIMA Link 0 1,000 0
OPENORCA Link 0 30,000 0
Ultrachat Link 0 50,000 0
MagpieMT Link 0 30,000 0
Tulu-V2-Science Link 0 7,000 0
Bactrian-X Link 0 0 67,000
Magpie (Translated by us) - 0 0 60,000
Everyday-conversations (Translated by us) - 0 0 2,260
Aya_datasets Link 0 3,944 738
alpaca-gpt4-it Link 0 0 15,000
capybara-claude-15k-ita Link 0 0 15,000
Wildchat Link 0 0 5,000
GPT4_INST Link 0 0 10,000
Safety Italian - 0 0 21,000
Handmade Italian - 0 0 2,000

For more details please check our tech report.

Online DPO Training

This model card is for our DPO model. Direct Preference Optimization (DPO) is a method that refines models based on user feedback, similar to Reinforcement Learning from Human Feedback (RLHF), but without the complexity of reinforcement learning. Online DPO further improves this by allowing real-time adaptation during training, continuously refining the model with new feedback. For training this model, we used the Hugging Face TRL library and Online DPO, with the Skywork/Skywork-Reward-Llama-3.1-8B-v0.2 model as the judge to evaluate and guide optimization. For this stage we used just the prompts from HuggingFaceH4/ultrafeedback_binarized (English), efederici/evol-dpo-ita (Italian) and Babelscape/ALERT translated to Italian were used, with additional manually curated data for safety.

For more details please check our tech report.

Model Evaluation

We assessed our model using the LM-Evaluation-Harness library, which serves as a comprehensive framework for testing generative language models across a wide range of evaluation tasks.

All the reported benchmark data was already present in the LM-Evaluation-Harness suite.

Scores will be available at later stage.

Tokenizer Fertility

The tokenizer fertility measures the average amount of tokens produced per tokenized word. A tokenizer displaying high fertility values in a particular language typically indicates that it segments words in that language extensively. The tokenizer fertility is strictly correlated with the inference speed of the model with respect to a specific language, as higher values mean longer sequences of tokens to generate and thus lower inference speed.

Fertility computed over a sample of Cultura X (CX) data and Wikipedia (Wp):

Model Voc. Size Fertility IT (CX) Fertility EN (CX) Fertility IT (Wp) Fertility EN (Wp)
Mistral-7B-v0.1 32000 1.87 1.32 2.05 1.57
gemma-7b 256000 1.42 1.18 1.56 1.34
Minerva-3B-base-v1.0 32768 1.39 1.32 1.66 1.59
Minerva-7B-base-v1.0 51200 1.32 1.26 1.56 1.51

The Sapienza NLP Team

  • Riccardo Orlando: data preprocessing, model training
  • Pere-Lluis Huguet Cabot: data preprocessing, vocabulary, evaluation
  • Luca Moroni: data curation, data analysis, downstream tasks, evaluation
  • Simone Conia: data curation, evaluation, project supervision
  • Edoardo Barba: data preprocessing, downstream tasks, project supervision
  • Roberto Navigli: project coordinator

Special thanks for their support

  • Giuseppe Fiameni, Nvidia
  • Sergio Orlandini, CINECA

Acknowledgments

This work was funded by the PNRR MUR project PE0000013-FAIR. We acknowledge the CINECA award "IscB_medit" under the ISCRA initiative, for the availability of high performance computing resources and support.