File size: 14,383 Bytes
a1c81a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3e7c79bb",
"metadata": {},
"source": [
"# MiniCoderX Project - Full Pipeline Notebook"
]
},
{
"cell_type": "markdown",
"id": "82aa402a",
"metadata": {},
"source": [
"# Step 0: Environment Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fe661c57",
"metadata": {},
"outputs": [],
"source": [
"pip install -q tokenizers transformers datasets sentencepiece langchain_community ollama networkx evaluate rouge_score matplotlib seaborn lark fastapi uvicorn"
]
},
{
"cell_type": "markdown",
"id": "7313bed0",
"metadata": {},
"source": [
"# Step 1: Import and Load Model"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2e28b42b",
"metadata": {},
"outputs": [],
"source": [
"from tokenizers import Tokenizer, models, trainers, pre_tokenizers\n",
"from tokenizers.normalizers import Sequence, Lowercase, NFD, StripAccents\n",
"from tokenizers.pre_tokenizers import Whitespace\n",
"from tokenizers.processors import TemplateProcessing\n",
"from transformers import PreTrainedTokenizerFast\n",
"import os\n",
"\n",
"tokenizer = Tokenizer(models.BPE())\n",
"tokenizer.normalizer = Sequence([NFD(), Lowercase(), StripAccents()])\n",
"tokenizer.pre_tokenizer = Whitespace()\n",
"\n",
"trainer = trainers.BpeTrainer(\n",
" vocab_size=32000,\n",
" special_tokens=[\"<pad>\", \"<s>\", \"</s>\", \"<unk>\", \"<mask>\"]\n",
")\n",
"\n",
"data_path = \"data/code_corpus.txt\"\n",
"\n",
"if not os.path.exists(data_path):\n",
" raise FileNotFoundError(f\"Dataset not found at: {data_path}\")\n",
"else:\n",
" print(\"Dataset found:\", data_path)\n",
"\n",
"tokenizer.train([data_path], trainer)\n",
"\n",
"\n",
"tokenizer.post_processor = TemplateProcessing(\n",
" single=\"<s> $A </s>\",\n",
" pair=\"<s> $A </s> </s> $B </s>\",\n",
" special_tokens=[\n",
" (\"<s>\", tokenizer.token_to_id(\"<s>\")),\n",
" (\"</s>\", tokenizer.token_to_id(\"</s>\")),\n",
" ],\n",
")\n",
"\n",
"tokenizer_path = \"minicoderx-tokenizer\"\n",
"os.makedirs(tokenizer_path, exist_ok=True)\n",
"tokenizer.save(f\"{tokenizer_path}/tokenizer.json\")\n",
"print(\"Tokenizer saved to:\", tokenizer_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d1ab6421",
"metadata": {},
"outputs": [],
"source": [
"from transformers import PreTrainedTokenizerFast\n",
"\n",
"hf_tokenizer = PreTrainedTokenizerFast(\n",
" tokenizer_file=\"minicoderx-tokenizer/tokenizer.json\",\n",
" unk_token=\"<unk>\",\n",
" pad_token=\"<pad>\",\n",
" cls_token=\"<s>\",\n",
" sep_token=\"</s>\",\n",
" mask_token=\"<mask>\",\n",
")\n",
"\n",
"hf_tokenizer.save_pretrained(\"minicoderx-tokenizer\")\n",
"print(\"HuggingFace tokenizer saved and ready.\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ba28e05f",
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n",
"\n",
"# Load your trained model and tokenizer\n",
"tokenizer = AutoTokenizer.from_pretrained(\"minicoderx-model\")\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"minicoderx-model\")\n",
"\n",
"print(\"Model and tokenizer loaded.\")"
]
},
{
"cell_type": "markdown",
"id": "852b82c3",
"metadata": {},
"source": [
"# Step 2: Inference - Code Generation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6ab29f13",
"metadata": {},
"outputs": [],
"source": [
"input_text = \"Write a Python function to compute factorial\"\n",
"inputs = tokenizer(input_text, return_tensors=\"pt\")\n",
"outputs = model.generate(**inputs, max_length=128)\n",
"print(\"\\nGenerated Code:\\n\")\n",
"print(tokenizer.decode(outputs[0], skip_special_tokens=True))"
]
},
{
"cell_type": "markdown",
"id": "e2e495b0",
"metadata": {},
"source": [
"# Step 3: Structure-Aware Encoding with AST"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c5337fe3",
"metadata": {},
"outputs": [],
"source": [
"import ast, networkx as nx, matplotlib.pyplot as plt, seaborn as sns\n",
"\n",
"def build_ast_graph_with_metadata(node, graph, parent=None):\n",
" node_id = str(id(node))\n",
" graph.add_node(node_id, label=type(node).__name__)\n",
" if parent:\n",
" graph.add_edge(parent, node_id)\n",
" for child in ast.iter_child_nodes(node):\n",
" build_ast_graph_with_metadata(child, graph, node_id)\n",
"\n",
"code_sample = \"\"\"\n",
"def add(a, b):\n",
" return a + b\n",
"\"\"\"\n",
"tree = ast.parse(code_sample)\n",
"G = nx.DiGraph()\n",
"build_ast_graph_with_metadata(tree, G)\n",
"pos = nx.spring_layout(G)\n",
"labels = nx.get_node_attributes(G, 'label')\n",
"nx.draw(G, pos, labels=labels, with_labels=True, node_size=1200, node_color='lightblue')\n",
"plt.title(\"AST Visualization\")\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"id": "f732a8cf",
"metadata": {},
"source": [
"# Step 4: LangChain + Ollama Integration"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0b2c013c",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.llms import Ollama\n",
"from langchain.chains import LLMChain\n",
"from langchain.prompts import PromptTemplate\n",
"\n",
"llm = Ollama(model=\"minicoderx\")\n",
"prompt = PromptTemplate(input_variables=[\"instruction\"], template=\"Generate Python code for the task: {instruction}\")\n",
"chain = LLMChain(llm=llm, prompt=prompt)\n",
"print(\"\\nLangChain-Ollama Output:\")\n",
"print(chain.run(\"Create a function to reverse a string\"))"
]
},
{
"cell_type": "markdown",
"id": "6ded4c5e",
"metadata": {},
"source": [
"# Step 5: Evaluation (MBPP)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "37f133a4",
"metadata": {},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"import evaluate\n",
"\n",
"dataset = load_dataset(\"mbpp\")\n",
"eval_bleu = evaluate.load(\"bleu\")\n",
"eval_rouge = evaluate.load(\"rouge\")\n",
"\n",
"sample = dataset['test'][0]\n",
"input_text = f\"Write a Python function: {sample['text']}\"\n",
"inputs = tokenizer(input_text, return_tensors=\"pt\")\n",
"output = model.generate(**inputs, max_length=128)\n",
"generated_code = tokenizer.decode(output[0], skip_special_tokens=True)\n",
"\n",
"print(\"\\nEvaluation Sample Output:\\n\", generated_code)\n",
"print(\"BLEU:\", eval_bleu.compute(predictions=[generated_code], references=[sample['code']]))\n",
"print(\"ROUGE:\", eval_rouge.compute(predictions=[generated_code], references=[sample['code']]))"
]
},
{
"cell_type": "markdown",
"id": "2b00a47c",
"metadata": {},
"source": [
"# Step 6: Testing, Verification, and Unit Test Gen"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a9a8ef01",
"metadata": {},
"outputs": [],
"source": [
"import tempfile, subprocess\n",
"\n",
"def run_code(code, test_case):\n",
" with tempfile.NamedTemporaryFile(mode='w+', suffix='.py', delete=False) as tmp:\n",
" tmp.write(code + '\\n' + test_case)\n",
" tmp.flush()\n",
" result = subprocess.run(['python', tmp.name], capture_output=True, text=True)\n",
" print(\"Output:\\n\", result.stdout)\n",
" if result.stderr:\n",
" print(\"Errors:\\n\", result.stderr)\n",
"\n",
"test_case = \"print(factorial(5)) # Expected: 120\"\n",
"run_code(generated_code, test_case)\n",
"\n",
"unit_prompt = PromptTemplate(input_variables=[\"code\"], template=\"Write a unittest in Python for the following function:\\n\\n{code}\")\n",
"unit_chain = LLMChain(llm=llm, prompt=unit_prompt)\n",
"print(\"\\nGenerated Unit Test:\\n\", unit_chain.run(code=generated_code))"
]
},
{
"cell_type": "markdown",
"id": "9b9fcc1e",
"metadata": {},
"source": [
"# Step 7: Safety and Grammar Constraints"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5e3dd5ee",
"metadata": {},
"outputs": [],
"source": [
"from lark import Lark, UnexpectedInput\n",
"\n",
"python_grammar = \"\"\"\n",
"start: stmt+\n",
"stmt: \"def\" NAME \"(\" [params] \")\" \":\" suite\n",
"params: NAME (\",\" NAME)*\n",
"suite: NEWLINE INDENT stmt+ DEDENT | simple_stmt\n",
"simple_stmt: NAME \"=\" expr NEWLINE\n",
"expr: atom | atom operator atom\n",
"atom: NAME | NUMBER\n",
"operator: \"+\" | \"-\" | \"*\" | \"/\"\n",
"%import common.CNAME -> NAME\n",
"%import common.NUMBER\n",
"%import common.NEWLINE\n",
"%import common.WS_INLINE\n",
"%import common.INDENT\n",
"%import common.DEDENT\n",
"%ignore WS_INLINE\n",
"\"\"\"\n",
"\n",
"parser = Lark(python_grammar, parser=\"lalr\")\n",
"\n",
"unsafe_keywords = [\"os.system\", \"subprocess\", \"eval\", \"exec\", \"open(\", \"import socket\"]\n",
"print(\"\\nSafety Check:\")\n",
"print(\"Unsafe pattern found\" if any(k in generated_code for k in unsafe_keywords) else \"Code is safe\")\n",
"\n",
"print(\"\\nGrammar Check:\")\n",
"try:\n",
" parser.parse(generated_code)\n",
" print(\"Code grammar is valid.\")\n",
"except UnexpectedInput as e:\n",
" print(\"Grammar error:\", e)"
]
},
{
"cell_type": "markdown",
"id": "8b1e2b86",
"metadata": {},
"source": [
"# Step 8: Multi-Task Preprocessing (gen, sum, trans)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "09a12f1d",
"metadata": {},
"outputs": [],
"source": [
"def preprocess_multitask(example):\n",
" if example['task'] == 'gen':\n",
" input_text = f\"Write code: {example['text']}\"\n",
" output_text = example['code']\n",
" elif example['task'] == 'sum':\n",
" input_text = f\"Summarize this code: {example['code']}\"\n",
" output_text = example['text']\n",
" elif example['task'] == 'trans':\n",
" input_text = f\"Translate Java to Python: {example['java']}\"\n",
" output_text = example['python']\n",
" else:\n",
" input_text, output_text = example['text'], example['code']\n",
" model_input = tokenizer(input_text, max_length=128, truncation=True)\n",
" with tokenizer.as_target_tokenizer():\n",
" labels = tokenizer(output_text, max_length=128, truncation=True)\n",
" model_input['labels'] = labels['input_ids']\n",
" return model_input"
]
},
{
"cell_type": "markdown",
"id": "6018db4c",
"metadata": {},
"source": [
"# Step 9: Fine-Tuning Setup"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c15ad38d",
"metadata": {},
"outputs": [],
"source": [
"from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, DataCollatorForSeq2Seq\n",
"\n",
"train_dataset = dataset[\"train\"].map(preprocess_multitask, remove_columns=dataset[\"train\"].column_names)\n",
"val_dataset = dataset[\"validation\"].map(preprocess_multitask, remove_columns=dataset[\"validation\"].column_names)\n",
"\n",
"training_args = Seq2SeqTrainingArguments(\n",
" output_dir=\"./minicoderx-finetuned\",\n",
" evaluation_strategy=\"epoch\",\n",
" learning_rate=5e-5,\n",
" per_device_train_batch_size=8,\n",
" per_device_eval_batch_size=8,\n",
" weight_decay=0.01,\n",
" save_total_limit=2,\n",
" num_train_epochs=3,\n",
" predict_with_generate=True,\n",
" logging_dir=\"./logs\",\n",
" logging_steps=10,\n",
")\n",
"\n",
"data_collator = DataCollatorForSeq2Seq(tokenizer, model=model)\n",
"trainer = Seq2SeqTrainer(\n",
" model=model,\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" eval_dataset=val_dataset,\n",
" tokenizer=tokenizer,\n",
" data_collator=data_collator,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "28d3dcb1",
"metadata": {},
"outputs": [],
"source": [
"# Uncomment to run training\n",
"# trainer.train()\n",
"# trainer.save_model(\"./minicoderx-finetuned\")"
]
},
{
"cell_type": "markdown",
"id": "8c4d0d79",
"metadata": {},
"source": [
"# Step 10: Deploy with FastAPI"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3f239ed4",
"metadata": {},
"outputs": [],
"source": [
"from fastapi import FastAPI\n",
"from pydantic import BaseModel\n",
"import uvicorn\n",
"\n",
"app = FastAPI()\n",
"\n",
"class CodeRequest(BaseModel):\n",
" instruction: str\n",
"\n",
"@app.post(\"/generate\")\n",
"def generate_code(req: CodeRequest):\n",
" inputs = tokenizer(req.instruction, return_tensors=\"pt\")\n",
" outputs = model.generate(**inputs, max_length=128)\n",
" code = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
" return {\"code\": code}"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "33ec10a2",
"metadata": {},
"outputs": [],
"source": [
"# Uncomment to run API\n",
"# uvicorn.run(app, host=\"0.0.0.0\", port=8000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|