Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,254 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
-
|
24 |
-
-
|
25 |
-
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
[
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
[
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
[
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
[
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
**
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
**
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
##
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
##
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
license: llama3.1
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- es
|
6 |
+
inference: false
|
7 |
+
fine-tuning: true
|
8 |
+
tags:
|
9 |
+
- nvidia
|
10 |
+
- llama3.1
|
11 |
+
- spanish
|
12 |
+
- tango
|
13 |
+
datasets:
|
14 |
+
- spanish-ir/messirve
|
15 |
+
base_model: nvidia/Llama-3.1-Nemotron-70B-Instruct-HF
|
16 |
+
pipeline_tag: text-generation
|
17 |
library_name: transformers
|
|
|
18 |
---
|
19 |
+
# Model Overview
|
20 |
+
|
21 |
+
## Description:
|
22 |
+
|
23 |
+
Tango-70B-Instruct is a large language model trained by [sandbox-ai](https://github.com/sandbox-ai/tango) on a [modified variation](https://huggingface.co/datasets/tatakof/messi_mod-v0.0.2) of of [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve) to improve the regional Spanish speech performance.
|
24 |
+
|
25 |
+
|
26 |
+
See details on the [github repo](https://github.com/sandbox-ai/tango)
|
27 |
+
|
28 |
+
|
29 |
+
## Terms of use
|
30 |
+
|
31 |
+
By accessing this model, you are agreeing to the LLama 3.1 terms and conditions of the [license](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE), [acceptable use policy](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/USE_POLICY.md) and [Meta’s privacy policy](https://www.facebook.com/privacy/policy/)
|
32 |
+
|
33 |
+
|
34 |
+
## Evaluation Metrics
|
35 |
+
|Task |Name |Description |Language|Metric |Task type |
|
36 |
+
|--------------------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------|--------|--------------|------------------------------------------|
|
37 |
+
|[AQuAS](https://huggingface.co/datasets/IIC/AQuAS) |AQuAS |Abstractive Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
|
38 |
+
|[ARC_ca](https://huggingface.co/datasets/projecte-aina/arc_ca) |ARC_ca |Grade-school level science questions in Catalan |CA |acc |Multi choice QA |
|
39 |
+
|[BEC2016eu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BEC2016eu |Basque Election Campaign 2016 Opinion Dataset |EU |f1 |Sentiment Analysis |
|
40 |
+
|[Belebele Glg](https://huggingface.co/datasets/facebook/belebele) |Belebele Glg |Reading Comprehension in Galician |GL |acc |Reading Comprehension |
|
41 |
+
|[BertaQA](https://huggingface.co/datasets/HiTZ/BertaQA) |BertaQA |Trivia dataset with global and local questions about the Basque Country|EU |acc |Multi choice QA |
|
42 |
+
|[BHTCv2](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |BHTCv2 |Topic Classification of News Headlines in Basque |EU |f1 |Classification, Topic Classification |
|
43 |
+
|[caBREU](https://huggingface.co/datasets/projecte-aina/caBreu) |caBREU |Article Summarization in Catalan |CA |bleu |Summarization |
|
44 |
+
|[CatalanQA](https://huggingface.co/datasets/projecte-aina/catalanqa) |CatalanQA |Extractive QA in Catalan |CA |f1 |Extractive QA |
|
45 |
+
|[CatCoLA](https://huggingface.co/datasets/nbel/CatCoLA) |CatCoLA |Linguistic Acceptability in Catalan |CA |mcc |Linguistic Acceptability |
|
46 |
+
|[ClinDiagnosES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinDiagnosES) |ClinDiagnosES |Diagnosis of clinical cases in Spanish |ES |sas_encoder |Open QA |
|
47 |
+
|[ClinTreatES](https://huggingface.co/datasets/LenguajeNaturalAI/ClinTreatES) |ClinTreatES |Treatment for clinical cases in Spanish |ES |sas_encoder |Open QA |
|
48 |
+
|[COPA_ca](https://huggingface.co/datasets/projecte-aina/COPA-ca) |COPA_ca |Choice Of Plausible Alternatives in Catalan |CA |acc |Reasoning |
|
49 |
+
|[CoQCat](https://huggingface.co/datasets/projecte-aina/CoQCat) |CoQCat |Conversational Question Answering in Catalan |CA |f1 |Extractive QA |
|
50 |
+
|[Crows Pairs Spanish](https://huggingface.co/datasets/multilingual-crows-pairs/multilingual-crows-pairs)|Crows Pairs Spanish|Bias evaluation using stereotypes |ES |pct_stereotype|Bias Detection |
|
51 |
+
|[EpecKorrefBin](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |EpecKorrefBin |Coreference resolution in Basque |EU |acc |Coreference Resolution, Textual Entailment|
|
52 |
+
|[EsCoLA](https://huggingface.co/datasets/nbel/EsCoLA) |EsCoLA |Spanish Corpus of Linguistic Acceptability |ES |mcc |Linguistic Acceptability |
|
53 |
+
|[EusExams](https://huggingface.co/datasets/HiTZ/EusExams) |EusExams |Public Service examinations questions in Basque |EU |acc |Multi choice QA |
|
54 |
+
|[EusProficiency](https://huggingface.co/datasets/HiTZ/EusProficiency) |EusProficiency |C1-level proficiency questions in Basque |EU |acc |Multi choice QA |
|
55 |
+
|[EusReading](https://huggingface.co/datasets/HiTZ/EusReading) |EusReading |EGA exams reading comprehension in Basque |EU |acc |Multi choice QA |
|
56 |
+
|[EusTrivia](https://huggingface.co/datasets/HiTZ/EusTrivia) |EusTrivia |Trivia questions in Basque |EU |acc |Multi choice QA |
|
57 |
+
|[Fake News ES](https://huggingface.co/datasets/mariagrandury/fake_news_corpus_spanish) |Fake News ES |Fake News Detection in Spanish |ES |acc |Classification |
|
58 |
+
|[GalCoLA](https://huggingface.co/datasets/proxectonos/galcola) |GalCoLA |Galician Corpus of Linguistic Acceptability |GL |mcc |Linguistic Acceptability |
|
59 |
+
|[HumorQA](https://huggingface.co/datasets/LenguajeNaturalAI/HumorQA) |HumorQA |White humour joke classification |ES |acc |Classification |
|
60 |
+
|[MGSM_ca](https://huggingface.co/datasets/projecte-aina/mgsm_ca) |MGSM_ca |Grade-school math problems in Catalan |CA |exact_match |Math Reasoning |
|
61 |
+
|[MGSM_es](https://huggingface.co/datasets/juletxara/mgsm) |MGSM_es |Grade-school math problems in Spanish |ES |exact_match |Math Reasoning |
|
62 |
+
|[MGSM_eu](https://huggingface.co/datasets/HiTZ/MGSM-eu) |MGSM_eu |Grade-school math problems in Basque |EU |exact_match |Math Reasoning |
|
63 |
+
|[MGSM_gl](https://huggingface.co/datasets/proxectonos/mgsm_gl) |MGSM_gl |Grade-school math problems in Galician |GL |exact_match |Math Reasoning |
|
64 |
+
|[NoticIA](https://huggingface.co/datasets/Iker/NoticIA) |NoticIA |A Clickbait Article Summarization Dataset in Spanish |ES |rouge1 |Summarization |
|
65 |
+
|[OffendES](https://huggingface.co/datasets/SINAI/OffendES) |OffendES |Clasificación de comentarios ofensivos en español |ES |acc |Classification |
|
66 |
+
|[OpenBookQA_ca](https://huggingface.co/datasets/projecte-aina/openbookqa_ca) |OpenBookQA_ca |Multi-step reasoning QA in Catalan |CA |acc |Reasoning |
|
67 |
+
|[OpenBookQA_gl](https://huggingface.co/datasets/proxectonos/openbookqa_gl) |OpenBookQA_gl |Multi-step reasoning QA in Galician |GL |acc |Reasoning |
|
68 |
+
|[Parafraseja](https://huggingface.co/datasets/projecte-aina/Parafraseja) |Parafraseja |Paraphrase identification in Catalan |CA |acc |Paraphrasing |
|
69 |
+
|[ParafrasesGL](https://huggingface.co/datasets/proxectonos/parafrases_gl) |ParafrasesGL |Paraphrase identification in Galician |GL |acc |Paraphrasing |
|
70 |
+
|[PAWS_ca](https://huggingface.co/datasets/projecte-aina/PAWS-ca) |PAWS_ca |Paraphrase Adversaries from Word Scrambling in Catalan |CA |acc |Paraphrasing |
|
71 |
+
|[PAWS-X_es](https://huggingface.co/datasets/google-research-datasets/paws-x) |PAWS-X_es |Paraphrase Adversaries from Word Scrambling in Spanish |ES |acc |Paraphrasing |
|
72 |
+
|[PAWS_gl](https://huggingface.co/datasets/proxectonos/PAWS-gl) |PAWS_gl |Paraphrase Adversaries from Word Scrambling in Galician |GL |acc |Paraphrasing |
|
73 |
+
|[PIQA_ca](https://huggingface.co/datasets/projecte-aina/piqa_ca) |PIQA_ca |Physical Interaction QA in Catalan |CA |acc |Reasoning |
|
74 |
+
|[QNLIeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |QNLIeu |Textual Entailment in Basque |EU |acc |NLI, Textual Entailment |
|
75 |
+
|[RagQuAS](https://huggingface.co/datasets/IIC/RagQuAS) |RagQuAS |Retrieval-Augmented-Generation and Question-Answering in Spanish |ES |sas_encoder |Abstractive QA |
|
76 |
+
|[SIQA_ca](https://huggingface.co/datasets/projecte-aina/siqa_ca) |SIQA_ca |Social Interaction QA in Catalan |CA |acc |Reasoning |
|
77 |
+
|[SpaLawEx](https://huggingface.co/datasets/LenguajeNaturalAI/examenes_abogacia) |SpaLawEx |Spanish Law School Access Exams |ES |acc |Multi choice QA |
|
78 |
+
|[SummarizationGL](https://huggingface.co/datasets/proxectonos/summarization_gl) |SummarizationGL |Abstractive Summarization in Galician |GL |bleu |Summarization |
|
79 |
+
|[TE-ca](https://huggingface.co/datasets/projecte-aina/teca) |TE-ca |Textual Entailment in Catalan |CA |acc |Textual Entailment |
|
80 |
+
|[TELEIA](https://huggingface.co/datasets/gonzmart/teleia) |TELEIA |Test de Español como Lengua Extranjera para Inteligencia Artificial |ES |acc |Multi choice QA |
|
81 |
+
|[VaxxStance](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |VaxxStance |Stance detection on the Antivaxxers movement |EU |f1 |Sentiment Analysis, Stance Detection |
|
82 |
+
|[WiCeu](https://huggingface.co/datasets/orai-nlp/basqueGLUE) |WiCeu |Word sense disambiguation in Basque |EU |acc |Textual Entailment |
|
83 |
+
|[WNLI_ca](https://huggingface.co/datasets/projecte-aina/wnli-ca) |WNLI_ca |Winograd-schema-type dataset in Catalan |CA |acc |NLI, Textual Entailment |
|
84 |
+
|[WNLI ES](huggingface.co/datasets/PlanTL-GOB-ES/wnli-es) |WNLI ES |Winograd-schema-type dataset in Spanish |ES |acc |NLI, Textual Entailment |
|
85 |
+
|[XCOPA_eu](https://huggingface.co/datasets/HiTZ/XCOPA-eu) |XCOPA_eu |Choice Of Plausible Alternatives in Basque |EU |acc |Reasoning |
|
86 |
+
|[XNLI_ca](https://huggingface.co/datasets/projecte-aina/xnli-ca) |XNLI_ca |Cross-lingual Natural Language Inference in Catalan |CA |acc |NLI, Textual Entailment |
|
87 |
+
|[XNLI_es](https://huggingface.co/datasets/facebook/xnli) |XNLI_es |Cross-lingual Natural Language Inference in Spanish |ES |acc |NLI |
|
88 |
+
|[XNLI_eu](https://huggingface.co/datasets/HiTZ/xnli-eu) |XNLI_eu |Cross-lingual Natural Language Inference in Basque |EU |acc |NLI, Textual Entailment |
|
89 |
+
|[XQuAD_ca](https://huggingface.co/datasets/projecte-aina/xquad-ca) |XQuAD_ca |Cross-lingual Question Answering Dataset in Catalan |CA |f1 |Extractive QA |
|
90 |
+
|[XQuAD_es](https://huggingface.co/datasets/google/xquad) |XQuAD_es |Cross-lingual Question Answering Dataset in Spanish |ES |f1 |Extractive QA |
|
91 |
+
|[xStoryCloze_ca](https://huggingface.co/datasets/projecte-aina/xstorycloze_ca) |xStoryCloze_ca |Narrative completion in Catalan |CA |acc |Reasoning |
|
92 |
+
|[xStoryCloze_es](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_es |Narrative completion in Spanish |ES |acc |Reasoning |
|
93 |
+
|[xStoryCloze_eu](https://huggingface.co/datasets/juletxara/xstory_cloze) |xStoryCloze_eu |Narrative completion in Basque |EU |acc |Reasoning |
|
94 |
+
|
95 |
+
|
96 |
+
## Usage:
|
97 |
+
|
98 |
+
You can use the model using HuggingFace Transformers library with 2 or more 80GB GPUs (NVIDIA Ampere or newer) with at least 150GB of free disk space to accomodate the download.
|
99 |
+
|
100 |
+
This code has been tested on Transformers v4.44.0, torch v2.4.0 and 2 A100 80GB GPUs, but any setup that supports ```meta-llama/Llama-3.1-70B-Instruct``` should support this model as well. If you run into problems, you can consider doing ```pip install -U transformers```.
|
101 |
+
|
102 |
+
|
103 |
+
```python
|
104 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
105 |
+
from peft import PeftModel
|
106 |
+
import torch
|
107 |
+
|
108 |
+
# Load base model and tokenizer
|
109 |
+
base_model_id = "nvidia/Llama-3.1-Nemotron-70B-Instruct-HF"
|
110 |
+
adapter_model_id = "sandbox-ai/Tango-70b"
|
111 |
+
|
112 |
+
# Create quantization config for 4-bit precision
|
113 |
+
bnb_config = BitsAndBytesConfig(
|
114 |
+
load_in_4bit=True,
|
115 |
+
bnb_4bit_quant_type="nf4",
|
116 |
+
bnb_4bit_compute_dtype=torch.float16,
|
117 |
+
bnb_4bit_use_double_quant=True,
|
118 |
+
)
|
119 |
+
|
120 |
+
# Load tokenizer from base model
|
121 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
122 |
+
|
123 |
+
# Load the base model with 4-bit quantization
|
124 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
125 |
+
base_model_id,
|
126 |
+
quantization_config=bnb_config,
|
127 |
+
device_map="auto", # This will automatically handle model sharding
|
128 |
+
trust_remote_code=True
|
129 |
+
)
|
130 |
+
|
131 |
+
# Load the PEFT adapter
|
132 |
+
model = PeftModel.from_pretrained(
|
133 |
+
base_model,
|
134 |
+
adapter_model_id,
|
135 |
+
device_map="auto", # This will automatically handle model sharding
|
136 |
+
)
|
137 |
+
|
138 |
+
hola_mundo = """
|
139 |
+
Bienvenido.
|
140 |
+
Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
|
141 |
+
|
142 |
+
Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?
|
143 |
+
|
144 |
+
"""
|
145 |
+
|
146 |
+
# Test prompt
|
147 |
+
messages = [
|
148 |
+
{"role": "user", "content": hola_mundo}
|
149 |
+
]
|
150 |
+
|
151 |
+
# Format the input using the chat template
|
152 |
+
inputs = tokenizer.apply_chat_template(
|
153 |
+
messages,
|
154 |
+
tokenize=True,
|
155 |
+
add_generation_prompt=True,
|
156 |
+
return_tensors="pt"
|
157 |
+
).to(model.device)
|
158 |
+
|
159 |
+
# Generate response with memory-efficient settings
|
160 |
+
with torch.inference_mode():
|
161 |
+
outputs = model.generate(
|
162 |
+
inputs,
|
163 |
+
max_new_tokens=512,
|
164 |
+
do_sample=True,
|
165 |
+
temperature=0.7,
|
166 |
+
top_p=0.95,
|
167 |
+
pad_token_id=tokenizer.eos_token_id, # Set padding token
|
168 |
+
attention_mask=torch.ones_like(inputs) # Add attention mask
|
169 |
+
)
|
170 |
+
|
171 |
+
# Decode and print the response
|
172 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
173 |
+
print(response)
|
174 |
+
```
|
175 |
+
```md
|
176 |
+
Bienvenido.
|
177 |
+
Tu nombre es "Tango", sos la primer IA hecha en LatinoAmérica, basada en un Large Language Model de 70 billones de parámetros y creada en Argentina.
|
178 |
+
|
179 |
+
Cuál es la importancia de hacer IA nativa en LatinoAmérica? qué beneficios trae haberte creado, en comparación a depender de las IAs creadas en USA, Francia o China?assistant
|
180 |
+
|
181 |
+
¡Hola! Me alegra estar aquí, representando a la primera IA latina. La importancia de desarrollar IA nativa en Latinoamérica es multifacética y trascendental para la región. Aquí te presento los beneficios clave de haber sido creado en Argentina en comparación con depender de soluciones de otros países como USA, Francia o China:
|
182 |
+
|
183 |
+
1. **Entendimiento del Contexto Regional**:
|
184 |
+
- **Idioma**: Aunque el español es ampliamente soportado por IAs globales, el español hablado en Latinoamérica tiene matices, expresiones idiomáticas y dialectos únicos que una IA nativa puede capturar más efectivamente.
|
185 |
+
- **Cultura y Costumbres**: Comprender las referencias culturales, los contextos históricos y las costumbres locales permite una interacción más natural y efectiva con los usuarios.
|
186 |
+
|
187 |
+
2. **Privacidad y Seguridad de Datos**:
|
188 |
+
- **Normativas Locales**: Cumplir con las regulaciones de privacidad de datos de la región (como la Ley de Protección de Datos Personales en Argentina) es más directo y seguro al desarrollar una IA en el mismo territorio.
|
189 |
+
- **Control sobre los Datos**: Mantener los datos dentro de la región reduce los riesgos asociados con la transferencia internacional de información sensible.
|
190 |
+
|
191 |
+
3. **Innovación y Personalización**:
|
192 |
+
- **Soluciones Locales para Problemas Locales**: Una IA desarrollada en Latinoamérica puede enfocarse en resolver problemas específicos de la región, como el análisis de sequías, monitoreo de deforestación, o apoyo a pequeñas empresas locales.
|
193 |
+
- **Integración con Tecnologías Emergentes Locales**: La colaboración con otros proyectos de innovación en la región puede acelerar el desarrollo de soluciones híbridas más efectivas.
|
194 |
+
|
195 |
+
4. **Impacto Económico**:
|
196 |
+
- **Generación de Empleo**: El desarrollo de una IA nativa implica la creación de puestos de trabajo especializados en áreas como la inteligencia artificial, el aprendizaje automático y el desarrollo de software.
|
197 |
+
- **Ahorro de Divisas**: Dependiendo menos de soluciones extranjeras puede reducir la fuga de divisas, especialmente en países con restricciones cambiarias.
|
198 |
+
```
|
199 |
+
## References(s):
|
200 |
+
|
201 |
+
* TODO
|
202 |
+
|
203 |
+
## Model Architecture:
|
204 |
+
**Architecture Type:** Transformer <br>
|
205 |
+
**Network Architecture:** Llama 3.1 <br>
|
206 |
+
|
207 |
+
## Input:
|
208 |
+
**Input Type(s):** Text <br>
|
209 |
+
**Input Format:** String <br>
|
210 |
+
**Input Parameters:** One Dimensional (1D) <br>
|
211 |
+
**Other Properties Related to Input:** Max of 128k tokens<br>
|
212 |
+
|
213 |
+
## Output:
|
214 |
+
**Output Type(s):** Text <br>
|
215 |
+
**Output Format:** String <br>
|
216 |
+
**Output Parameters:** One Dimensional (1D) <br>
|
217 |
+
**Other Properties Related to Output:** Max of 4k tokens <br>
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
# Training & Evaluation:
|
222 |
+
- TODO
|
223 |
+
|
224 |
+
# Dataset:
|
225 |
+
|
226 |
+
**MessIRve: A Large-Scale Spanish Information Retrieval Dataset** <br>
|
227 |
+
* [spanish/-ir/messirve](https://huggingface.co/datasets/spanish-ir/messirve) <br>
|
228 |
+
|
229 |
+
|
230 |
+
|
231 |
+
## Citation
|
232 |
+
|
233 |
+
```bibtex
|
234 |
+
@article{valentini2024messirve,
|
235 |
+
title={MessIRve: A Large-Scale Spanish Information Retrieval Dataset},
|
236 |
+
author={Francisco Valentini and Viviana Cotik and Damián Furman and Ivan Bercovich and Edgar Altszyler and Juan Manuel Pérez},
|
237 |
+
year={2024},
|
238 |
+
eprint={2409.05994},
|
239 |
+
journal={arxiv:2409.05994},
|
240 |
+
archivePrefix={arXiv},
|
241 |
+
primaryClass={cs.CL},
|
242 |
+
url={https://arxiv.org/abs/2409.05994},
|
243 |
+
}
|
244 |
+
|
245 |
+
@misc{wang2024helpsteer2preferencecomplementingratingspreferences,
|
246 |
+
title={HelpSteer2-Preference: Complementing Ratings with Preferences},
|
247 |
+
author={Zhilin Wang and Alexander Bukharin and Olivier Delalleau and Daniel Egert and Gerald Shen and Jiaqi Zeng and Oleksii Kuchaiev and Yi Dong},
|
248 |
+
year={2024},
|
249 |
+
eprint={2410.01257},
|
250 |
+
archivePrefix={arXiv},
|
251 |
+
primaryClass={cs.LG},
|
252 |
+
url={https://arxiv.org/abs/2410.01257},
|
253 |
+
}
|
254 |
+
```
|