File size: 8,451 Bytes
4ea2eae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# coding=utf-8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import List, Literal, Optional

from datasets import DatasetDict, concatenate_datasets, load_dataset, load_from_disk
from datasets.builder import DatasetGenerationError

from .configs import DataArguments


DEFAULT_CHAT_TEMPLATE = "{% for message in messages %}\n{% if message['role'] == 'user' %}\n{{ '<|user|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'system' %}\n{{ '<|system|>\n' + message['content'] + eos_token }}\n{% elif message['role'] == 'assistant' %}\n{{ '<|assistant|>\n'  + message['content'] + eos_token }}\n{% endif %}\n{% if loop.last and add_generation_prompt %}\n{{ '<|assistant|>' }}\n{% endif %}\n{% endfor %}"


def maybe_insert_system_message(messages, tokenizer):
    if messages[0]["role"] == "system":
        return

    # chat template can be one of two attributes, we check in order
    chat_template = tokenizer.chat_template
    if chat_template is None:
        chat_template = tokenizer.default_chat_template

    # confirm the jinja template refers to a system message before inserting
    if "system" in chat_template:
        messages.insert(0, {"role": "system", "content": ""})


def apply_chat_template(
    example,
    tokenizer,
    task: Literal["sft", "generation", "rm", "dpo"],
):
    if task in ["sft", "generation"]:
        messages = example["messages"]
        # We add an empty system message if there is none
        maybe_insert_system_message(messages, tokenizer)
        example["text"] = tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True if task == "generation" else False
        )
    elif task == "rm":
        if all(k in example.keys() for k in ("chosen", "rejected")):
            chosen_messages = example["chosen"]
            rejected_messages = example["rejected"]
            # We add an empty system message if there is none
            maybe_insert_system_message(chosen_messages, tokenizer)
            maybe_insert_system_message(rejected_messages, tokenizer)

            example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
        else:
            raise ValueError(
                f"Could not format example as dialogue for `rm` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
            )
    elif task == "dpo":
        if all(k in example.keys() for k in ("chosen", "rejected")):
            # For DPO, the inputs are triples of (prompt, chosen, rejected), where `chosen` and `rejected` are the final turn of a dialogue
            # We therefore need to extract the N-1 turns to form the prompt
            prompt_messages = example["chosen"][:-1]
            # Prepend a system message if the first message is not a system message
            if example["chosen"][0]["role"] != "system":
                prompt_messages.insert(0, {"role": "system", "content": ""})
            # Now we extract the final turn to define chosen/rejected responses
            chosen_messages = example["chosen"][-1:]
            rejected_messages = example["rejected"][-1:]
            example["text_chosen"] = tokenizer.apply_chat_template(chosen_messages, tokenize=False)
            example["text_rejected"] = tokenizer.apply_chat_template(rejected_messages, tokenize=False)
            example["text_prompt"] = tokenizer.apply_chat_template(prompt_messages, tokenize=False)
        else:
            raise ValueError(
                f"Could not format example as dialogue for `dpo` task! Require `[chosen, rejected]` keys but found {list(example.keys())}"
            )
    else:
        raise ValueError(
            f"Task {task} not supported, please ensure that the provided task is one of {['sft', 'generation', 'rm', 'dpo']}"
        )
    return example


def get_datasets(
    data_config: DataArguments | dict,
    splits: List[str] = ["train", "test"],
    shuffle: bool = True,
) -> DatasetDict:
    """
    Loads one or more datasets with varying training set proportions.

    Args:
        data_config (`DataArguments` or `dict`):
            Dataset configuration and split proportions.
        splits (`List[str]`, *optional*, defaults to `['train', 'test']`):
            Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the training and testing/validation data.

    Returns
        [`DatasetDict`]: The dataset dictionary containing the loaded datasets.
    """

    if type(data_config) is DataArguments:
        # Structure of the config to read the datasets and their mix
        # datasets_mixer:
        #     - 'dataset1': 0.5
        #     - 'dataset2': 0.3
        #     - 'dataset3': 0.2
        dataset_mixer = data_config.dataset_mixer
    elif isinstance(data_config, dict):
        # Structure of the input is:
        #     dataset_mixer = {
        #             "dataset1": 0.5,
        #             "dataset1": 0.3,
        #             "dataset1": 0.2,
        #         }
        dataset_mixer = data_config
    else:
        raise ValueError(f"Data config {data_config} not recognized.")

    raw_datasets = mix_datasets(dataset_mixer, splits=splits, shuffle=shuffle)
    return raw_datasets


def mix_datasets(dataset_mixer: dict, splits: Optional[List[str]] = None, shuffle=True) -> DatasetDict:
    """
    Loads and mixes datasets according to proportions specified in `dataset_mixer`.

    Args:
        dataset_mixer (`dict`):
            Dictionary containing the dataset names and their training proportions. By default, all test proportions are 1.
        splits (Optional[List[str]], *optional*, defaults to `None`):
            Dataset splits to load and mix. Assumes the splits exist in all datasets and have a `train_` or `test_` prefix.
        shuffle (`bool`, *optional*, defaults to `True`):
            Whether to shuffle the training and testing/validation data.
    """
    raw_datasets = DatasetDict()
    raw_train_datasets = []
    raw_val_datasets = []
    fracs = []
    for ds, frac in dataset_mixer.items():
        fracs.append(frac)
        for idx, split in enumerate(splits):
            try:
                # Try first if dataset on a Hub repo
                dataset = load_dataset(ds, split=split)
            except DatasetGenerationError:
                # If not, check local dataset
                dataset = load_from_disk(os.path.join(ds, split))

            if idx == 0:
                raw_train_datasets.append(dataset)
            else:
                raw_val_datasets.append(dataset)

    if any(frac < 0 for frac in fracs):
        raise ValueError("Dataset fractions cannot be negative.")

    if len(raw_train_datasets) > 0:
        train_subsets = []
        for dataset, frac in zip(raw_train_datasets, fracs):
            train_subset = dataset.select(range(int(frac * len(dataset))))
            train_subsets.append(train_subset)
        if shuffle:
            raw_datasets["train"] = concatenate_datasets(train_subsets).shuffle(seed=42)
        else:
            raw_datasets["train"] = concatenate_datasets(train_subsets)
    # No subsampling for test datasets to enable fair comparison across models
    if len(raw_val_datasets) > 0:
        if shuffle:
            raw_datasets["test"] = concatenate_datasets(raw_val_datasets).shuffle(seed=42)
        else:
            raw_datasets["test"] = concatenate_datasets(raw_val_datasets)

    if len(raw_datasets) == 0:
        raise ValueError(
            f"Dataset {dataset_mixer} not recognized with split {split}. Check the dataset has been correctly formatted."
        )

    return raw_datasets