File size: 2,311 Bytes
fd99db9
 
891a35a
5fd7ba7
891a35a
 
 
33a7d00
5fd7ba7
7702ca5
 
5fd7ba7
 
b8faf4b
a3749a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: apache-2.0
datasets:
- samadpls/querypls-prompt2sql-dataset
- b-mc2/sql-create-context
tags:
- stabilityai/StableBeluga-7B
- langchain
- opensource
- stabilityai
- SatbleBeluga-7B
language:
- en
pipeline_tag: text2text-generation
---

# 🛢💬 Querypls-Prompt2SQL

## Overview

Querypls-Prompt2SQL is a 💬 text-to-SQL generation model developed by [samadpls](https://github.com/samadpls). It is designed for generating SQL queries based on user prompts.

## Model Details

- **License:** Apache-2.0
- **Datasets:**
  - [samadpls/querypls-prompt2sql-dataset](https://huggingface.co/datasets/samadpls/querypls-prompt2sql-dataset)
  - [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
- **Tags:**
  - stabilityai/StableBeluga-7B
  - langchain
  - opensource
  - stabilityai
  - SatbleBeluga-7B
- **Language(s):** English
- **Pipeline Tag:** Text2Text Generation

## Model Usage

To get started with the model in Python, you can use the following code:

```python
from transformers import pipeline, AutoTokenizer

question = "how to get all employees from table0"
prompt = f'Your task is to create SQL query of the following {question}, just SQL query and no text'

tokenizer = AutoTokenizer.from_pretrained("samadpls/querypls-prompt2sql")
pipe = pipeline(task='text-generation', model="samadpls/querypls-prompt2sql", tokenizer=tokenizer, max_length=200)

result = pipe(prompt)
print(result[0]['generated_text'])
```

Adjust the `question` variable with the desired question, and the generated SQL query will be printed.

## Training Details

The model was trained on Google Colab, and its purpose is to be used in the [Querypls](https://github.com/samadpls/Querypls) project with the following training and validation loss progression:

```yaml
Copy code
Step     Training Loss    Validation Loss
943      2.332100         2.652054
1886     2.895300         2.551685
2829     2.427800         2.498556
3772     2.019600         2.472013
4715     3.391200         2.465390
```
`However, note that the model may be too large to load in certain environments.`

For more information and details, please refer to the provided [documentation](https://huggingface.co/stabilityai/StableBeluga-7B).


## Model Card Authors

- 🤖 [samadpls](https://github.com/samadpls)