File size: 2,311 Bytes
fd99db9 891a35a 5fd7ba7 891a35a 33a7d00 5fd7ba7 7702ca5 5fd7ba7 b8faf4b a3749a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
datasets:
- samadpls/querypls-prompt2sql-dataset
- b-mc2/sql-create-context
tags:
- stabilityai/StableBeluga-7B
- langchain
- opensource
- stabilityai
- SatbleBeluga-7B
language:
- en
pipeline_tag: text2text-generation
---
# 🛢💬 Querypls-Prompt2SQL
## Overview
Querypls-Prompt2SQL is a 💬 text-to-SQL generation model developed by [samadpls](https://github.com/samadpls). It is designed for generating SQL queries based on user prompts.
## Model Details
- **License:** Apache-2.0
- **Datasets:**
- [samadpls/querypls-prompt2sql-dataset](https://huggingface.co/datasets/samadpls/querypls-prompt2sql-dataset)
- [b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context)
- **Tags:**
- stabilityai/StableBeluga-7B
- langchain
- opensource
- stabilityai
- SatbleBeluga-7B
- **Language(s):** English
- **Pipeline Tag:** Text2Text Generation
## Model Usage
To get started with the model in Python, you can use the following code:
```python
from transformers import pipeline, AutoTokenizer
question = "how to get all employees from table0"
prompt = f'Your task is to create SQL query of the following {question}, just SQL query and no text'
tokenizer = AutoTokenizer.from_pretrained("samadpls/querypls-prompt2sql")
pipe = pipeline(task='text-generation', model="samadpls/querypls-prompt2sql", tokenizer=tokenizer, max_length=200)
result = pipe(prompt)
print(result[0]['generated_text'])
```
Adjust the `question` variable with the desired question, and the generated SQL query will be printed.
## Training Details
The model was trained on Google Colab, and its purpose is to be used in the [Querypls](https://github.com/samadpls/Querypls) project with the following training and validation loss progression:
```yaml
Copy code
Step Training Loss Validation Loss
943 2.332100 2.652054
1886 2.895300 2.551685
2829 2.427800 2.498556
3772 2.019600 2.472013
4715 3.391200 2.465390
```
`However, note that the model may be too large to load in certain environments.`
For more information and details, please refer to the provided [documentation](https://huggingface.co/stabilityai/StableBeluga-7B).
## Model Card Authors
- 🤖 [samadpls](https://github.com/samadpls)
|