File size: 4,290 Bytes
d127b01
87d5673
d6ce6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d127b01
87d5673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6ce6ad
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
---
language:
- en
license: apache-2.0
model-index:
- name: luxia-21.4b-alignment-v1.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 36.93
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 48.02
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 6.19
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.82
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.51
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 26.7
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
      name: Open LLM Leaderboard
---

# **Introduction**
We introduce luxia-21.4b-alignment-v1.0, an instruction-tuned and alignment model based on luxia-21.4b.
Please refer to the evaluation results table for details.

# **Instruction Fine-tuning Strategy**
We utilize state-of-the-art instruction fine-tuning methods including supervised fine-tuning (SFT) and direct preference optimization (DPO)

# **Data Contamination Test Results**
Results will be updated soon.

# **Evaluation Results**
Results will be updated soon.


# **Usage Instructions**

### **How to use**
```python
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("saltlux/luxia-21.4b-alignment-v0.1")
model = AutoModelForCausalLM.from_pretrained(
    "saltlux/luxia-21.4b-alignment-v0.1",
    device_map="auto",
    torch_dtype=torch.float16,
)
```

### **License**
- [saltlux/luxia-21.4b-alignment-v1.0](https://huggingface.co/saltlux/luxia-21.4b-alignment-v1.0): apache-2.0


### **Contact Us** ###
Any questions and suggestions are welcomed at the discussion tab.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saltlux__luxia-21.4b-alignment-v1.0)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.86|
|IFEval (0-Shot)    |36.93|
|BBH (3-Shot)       |48.02|
|MATH Lvl 5 (4-Shot)| 6.19|
|GPQA (0-shot)      | 6.82|
|MuSR (0-shot)      |12.51|
|MMLU-PRO (5-shot)  |26.70|