File size: 4,290 Bytes
d127b01 87d5673 d6ce6ad d127b01 87d5673 d6ce6ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
language:
- en
license: apache-2.0
model-index:
- name: luxia-21.4b-alignment-v1.0
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 36.93
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 48.02
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.19
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 6.82
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.51
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 26.7
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=saltlux/luxia-21.4b-alignment-v1.0
name: Open LLM Leaderboard
---
# **Introduction**
We introduce luxia-21.4b-alignment-v1.0, an instruction-tuned and alignment model based on luxia-21.4b.
Please refer to the evaluation results table for details.
# **Instruction Fine-tuning Strategy**
We utilize state-of-the-art instruction fine-tuning methods including supervised fine-tuning (SFT) and direct preference optimization (DPO)
# **Data Contamination Test Results**
Results will be updated soon.
# **Evaluation Results**
Results will be updated soon.
# **Usage Instructions**
### **How to use**
```python
# pip install transformers==4.35.2
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("saltlux/luxia-21.4b-alignment-v0.1")
model = AutoModelForCausalLM.from_pretrained(
"saltlux/luxia-21.4b-alignment-v0.1",
device_map="auto",
torch_dtype=torch.float16,
)
```
### **License**
- [saltlux/luxia-21.4b-alignment-v1.0](https://huggingface.co/saltlux/luxia-21.4b-alignment-v1.0): apache-2.0
### **Contact Us** ###
Any questions and suggestions are welcomed at the discussion tab.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_saltlux__luxia-21.4b-alignment-v1.0)
| Metric |Value|
|-------------------|----:|
|Avg. |22.86|
|IFEval (0-Shot) |36.93|
|BBH (3-Shot) |48.02|
|MATH Lvl 5 (4-Shot)| 6.19|
|GPQA (0-shot) | 6.82|
|MuSR (0-shot) |12.51|
|MMLU-PRO (5-shot) |26.70|
|