Edit model card

arabert_cross_vocabulary_task1_fold4

This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3485
  • Qwk: 0.8274
  • Mse: 0.3485

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Qwk Mse
No log 0.125 2 3.3451 0.0078 3.3451
No log 0.25 4 1.7732 0.1006 1.7732
No log 0.375 6 0.9918 0.3397 0.9918
No log 0.5 8 1.0024 0.4328 1.0024
No log 0.625 10 0.7301 0.4216 0.7301
No log 0.75 12 0.5802 0.5631 0.5802
No log 0.875 14 0.6362 0.6894 0.6362
No log 1.0 16 0.7395 0.5514 0.7395
No log 1.125 18 0.6416 0.6725 0.6416
No log 1.25 20 0.4261 0.7695 0.4261
No log 1.375 22 0.4028 0.7538 0.4028
No log 1.5 24 0.4106 0.7411 0.4106
No log 1.625 26 0.4467 0.8262 0.4467
No log 1.75 28 0.5005 0.8064 0.5005
No log 1.875 30 0.4228 0.7273 0.4228
No log 2.0 32 0.4315 0.6938 0.4315
No log 2.125 34 0.5164 0.7418 0.5164
No log 2.25 36 0.5729 0.7839 0.5729
No log 2.375 38 0.4661 0.8238 0.4661
No log 2.5 40 0.3578 0.7987 0.3578
No log 2.625 42 0.3452 0.7759 0.3452
No log 2.75 44 0.3973 0.8179 0.3973
No log 2.875 46 0.4218 0.8271 0.4218
No log 3.0 48 0.4017 0.8252 0.4017
No log 3.125 50 0.3564 0.8053 0.3564
No log 3.25 52 0.3357 0.8030 0.3357
No log 3.375 54 0.3797 0.8226 0.3797
No log 3.5 56 0.3918 0.8236 0.3918
No log 3.625 58 0.3278 0.8144 0.3278
No log 3.75 60 0.3256 0.8144 0.3256
No log 3.875 62 0.3437 0.8131 0.3437
No log 4.0 64 0.3613 0.8186 0.3613
No log 4.125 66 0.3373 0.8172 0.3373
No log 4.25 68 0.3211 0.8140 0.3211
No log 4.375 70 0.3426 0.8269 0.3426
No log 4.5 72 0.3901 0.8236 0.3901
No log 4.625 74 0.3966 0.8286 0.3966
No log 4.75 76 0.3865 0.8324 0.3865
No log 4.875 78 0.4241 0.8202 0.4241
No log 5.0 80 0.4385 0.8219 0.4385
No log 5.125 82 0.3778 0.8292 0.3778
No log 5.25 84 0.3614 0.8202 0.3614
No log 5.375 86 0.3526 0.8104 0.3526
No log 5.5 88 0.3321 0.8030 0.3321
No log 5.625 90 0.3304 0.8053 0.3304
No log 5.75 92 0.3951 0.8300 0.3951
No log 5.875 94 0.4136 0.8290 0.4136
No log 6.0 96 0.3632 0.8271 0.3632
No log 6.125 98 0.3475 0.8169 0.3475
No log 6.25 100 0.3496 0.8214 0.3496
No log 6.375 102 0.3335 0.8234 0.3335
No log 6.5 104 0.3458 0.8254 0.3458
No log 6.625 106 0.3502 0.8263 0.3502
No log 6.75 108 0.3362 0.8182 0.3362
No log 6.875 110 0.3599 0.8388 0.3599
No log 7.0 112 0.4336 0.8458 0.4336
No log 7.125 114 0.5158 0.8403 0.5158
No log 7.25 116 0.4762 0.8348 0.4762
No log 7.375 118 0.3764 0.8311 0.3764
No log 7.5 120 0.3240 0.7922 0.3240
No log 7.625 122 0.3223 0.7975 0.3223
No log 7.75 124 0.3420 0.8307 0.3420
No log 7.875 126 0.4217 0.8418 0.4217
No log 8.0 128 0.5511 0.8211 0.5511
No log 8.125 130 0.6089 0.8259 0.6089
No log 8.25 132 0.5762 0.8177 0.5762
No log 8.375 134 0.4857 0.8304 0.4857
No log 8.5 136 0.3859 0.8416 0.3859
No log 8.625 138 0.3411 0.8297 0.3411
No log 8.75 140 0.3342 0.8297 0.3342
No log 8.875 142 0.3479 0.8274 0.3479
No log 9.0 144 0.3703 0.8408 0.3703
No log 9.125 146 0.3868 0.8480 0.3868
No log 9.25 148 0.3835 0.8520 0.3835
No log 9.375 150 0.3675 0.8384 0.3675
No log 9.5 152 0.3528 0.8250 0.3528
No log 9.625 154 0.3467 0.8274 0.3467
No log 9.75 156 0.3454 0.8274 0.3454
No log 9.875 158 0.3471 0.8274 0.3471
No log 10.0 160 0.3485 0.8274 0.3485

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for salbatarni/arabert_cross_vocabulary_task1_fold4

Finetuned
(438)
this model