arabert_cross_vocabulary_task1_fold4
This model is a fine-tuned version of aubmindlab/bert-base-arabertv02 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3485
- Qwk: 0.8274
- Mse: 0.3485
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
---|---|---|---|---|---|
No log | 0.125 | 2 | 3.3451 | 0.0078 | 3.3451 |
No log | 0.25 | 4 | 1.7732 | 0.1006 | 1.7732 |
No log | 0.375 | 6 | 0.9918 | 0.3397 | 0.9918 |
No log | 0.5 | 8 | 1.0024 | 0.4328 | 1.0024 |
No log | 0.625 | 10 | 0.7301 | 0.4216 | 0.7301 |
No log | 0.75 | 12 | 0.5802 | 0.5631 | 0.5802 |
No log | 0.875 | 14 | 0.6362 | 0.6894 | 0.6362 |
No log | 1.0 | 16 | 0.7395 | 0.5514 | 0.7395 |
No log | 1.125 | 18 | 0.6416 | 0.6725 | 0.6416 |
No log | 1.25 | 20 | 0.4261 | 0.7695 | 0.4261 |
No log | 1.375 | 22 | 0.4028 | 0.7538 | 0.4028 |
No log | 1.5 | 24 | 0.4106 | 0.7411 | 0.4106 |
No log | 1.625 | 26 | 0.4467 | 0.8262 | 0.4467 |
No log | 1.75 | 28 | 0.5005 | 0.8064 | 0.5005 |
No log | 1.875 | 30 | 0.4228 | 0.7273 | 0.4228 |
No log | 2.0 | 32 | 0.4315 | 0.6938 | 0.4315 |
No log | 2.125 | 34 | 0.5164 | 0.7418 | 0.5164 |
No log | 2.25 | 36 | 0.5729 | 0.7839 | 0.5729 |
No log | 2.375 | 38 | 0.4661 | 0.8238 | 0.4661 |
No log | 2.5 | 40 | 0.3578 | 0.7987 | 0.3578 |
No log | 2.625 | 42 | 0.3452 | 0.7759 | 0.3452 |
No log | 2.75 | 44 | 0.3973 | 0.8179 | 0.3973 |
No log | 2.875 | 46 | 0.4218 | 0.8271 | 0.4218 |
No log | 3.0 | 48 | 0.4017 | 0.8252 | 0.4017 |
No log | 3.125 | 50 | 0.3564 | 0.8053 | 0.3564 |
No log | 3.25 | 52 | 0.3357 | 0.8030 | 0.3357 |
No log | 3.375 | 54 | 0.3797 | 0.8226 | 0.3797 |
No log | 3.5 | 56 | 0.3918 | 0.8236 | 0.3918 |
No log | 3.625 | 58 | 0.3278 | 0.8144 | 0.3278 |
No log | 3.75 | 60 | 0.3256 | 0.8144 | 0.3256 |
No log | 3.875 | 62 | 0.3437 | 0.8131 | 0.3437 |
No log | 4.0 | 64 | 0.3613 | 0.8186 | 0.3613 |
No log | 4.125 | 66 | 0.3373 | 0.8172 | 0.3373 |
No log | 4.25 | 68 | 0.3211 | 0.8140 | 0.3211 |
No log | 4.375 | 70 | 0.3426 | 0.8269 | 0.3426 |
No log | 4.5 | 72 | 0.3901 | 0.8236 | 0.3901 |
No log | 4.625 | 74 | 0.3966 | 0.8286 | 0.3966 |
No log | 4.75 | 76 | 0.3865 | 0.8324 | 0.3865 |
No log | 4.875 | 78 | 0.4241 | 0.8202 | 0.4241 |
No log | 5.0 | 80 | 0.4385 | 0.8219 | 0.4385 |
No log | 5.125 | 82 | 0.3778 | 0.8292 | 0.3778 |
No log | 5.25 | 84 | 0.3614 | 0.8202 | 0.3614 |
No log | 5.375 | 86 | 0.3526 | 0.8104 | 0.3526 |
No log | 5.5 | 88 | 0.3321 | 0.8030 | 0.3321 |
No log | 5.625 | 90 | 0.3304 | 0.8053 | 0.3304 |
No log | 5.75 | 92 | 0.3951 | 0.8300 | 0.3951 |
No log | 5.875 | 94 | 0.4136 | 0.8290 | 0.4136 |
No log | 6.0 | 96 | 0.3632 | 0.8271 | 0.3632 |
No log | 6.125 | 98 | 0.3475 | 0.8169 | 0.3475 |
No log | 6.25 | 100 | 0.3496 | 0.8214 | 0.3496 |
No log | 6.375 | 102 | 0.3335 | 0.8234 | 0.3335 |
No log | 6.5 | 104 | 0.3458 | 0.8254 | 0.3458 |
No log | 6.625 | 106 | 0.3502 | 0.8263 | 0.3502 |
No log | 6.75 | 108 | 0.3362 | 0.8182 | 0.3362 |
No log | 6.875 | 110 | 0.3599 | 0.8388 | 0.3599 |
No log | 7.0 | 112 | 0.4336 | 0.8458 | 0.4336 |
No log | 7.125 | 114 | 0.5158 | 0.8403 | 0.5158 |
No log | 7.25 | 116 | 0.4762 | 0.8348 | 0.4762 |
No log | 7.375 | 118 | 0.3764 | 0.8311 | 0.3764 |
No log | 7.5 | 120 | 0.3240 | 0.7922 | 0.3240 |
No log | 7.625 | 122 | 0.3223 | 0.7975 | 0.3223 |
No log | 7.75 | 124 | 0.3420 | 0.8307 | 0.3420 |
No log | 7.875 | 126 | 0.4217 | 0.8418 | 0.4217 |
No log | 8.0 | 128 | 0.5511 | 0.8211 | 0.5511 |
No log | 8.125 | 130 | 0.6089 | 0.8259 | 0.6089 |
No log | 8.25 | 132 | 0.5762 | 0.8177 | 0.5762 |
No log | 8.375 | 134 | 0.4857 | 0.8304 | 0.4857 |
No log | 8.5 | 136 | 0.3859 | 0.8416 | 0.3859 |
No log | 8.625 | 138 | 0.3411 | 0.8297 | 0.3411 |
No log | 8.75 | 140 | 0.3342 | 0.8297 | 0.3342 |
No log | 8.875 | 142 | 0.3479 | 0.8274 | 0.3479 |
No log | 9.0 | 144 | 0.3703 | 0.8408 | 0.3703 |
No log | 9.125 | 146 | 0.3868 | 0.8480 | 0.3868 |
No log | 9.25 | 148 | 0.3835 | 0.8520 | 0.3835 |
No log | 9.375 | 150 | 0.3675 | 0.8384 | 0.3675 |
No log | 9.5 | 152 | 0.3528 | 0.8250 | 0.3528 |
No log | 9.625 | 154 | 0.3467 | 0.8274 | 0.3467 |
No log | 9.75 | 156 | 0.3454 | 0.8274 | 0.3454 |
No log | 9.875 | 158 | 0.3471 | 0.8274 | 0.3471 |
No log | 10.0 | 160 | 0.3485 | 0.8274 | 0.3485 |
Framework versions
- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for salbatarni/arabert_cross_vocabulary_task1_fold4
Base model
aubmindlab/bert-base-arabertv02