Back to all models
token-classification mask_token: [MASK]
Query this model
πŸ”₯ This model is currently loaded and running on the Inference API. ⚠️ This model could not be loaded by the inference API. ⚠️ This model can be loaded on the Inference API on-demand.
JSON Output
API endpoint  

⚑️ Upgrade your account to access the Inference API

Share Copied link to clipboard

Monthly model downloads

sagorsarker/codeswitch-spaeng-ner-lince sagorsarker/codeswitch-spaeng-ner-lince
23 downloads
last 30 days

pytorch

tf

Contributed by

sagorsarker Sagor Sarker
9 models

How to use this model directly from the πŸ€—/transformers library:

			
Copy to clipboard
from transformers import AutoTokenizer, AutoModelForTokenClassification tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince") model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince")

codeswitch-spaeng-ner-lince

This is a pretrained model for Name Entity Recognition of spanish-english code-mixed data used from LinCE

This model is trained for this below repository.

https://github.com/sagorbrur/codeswitch

To install codeswitch:

pip install codeswitch

Name Entity Recognition of Spanish-English Mixed Data

  • Method-1

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince")

model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-spaeng-ner-lince")

ner_model = pipeline('ner', model=model, tokenizer=tokenizer)

ner_model("put any spanish english code-mixed sentence")
  • Method-2
from codeswitch.codeswitch import NER
ner = NER('spa-eng')
text = "" # your mixed sentence 
result = ner.tag(text)
print(result)