Edit model card

codeswitch-hineng-ner-lince

This is a pretrained model for Name Entity Recognition of Hindi-english code-mixed data used from LinCE

This model is trained for this below repository.

https://github.com/sagorbrur/codeswitch

To install codeswitch:

pip install codeswitch

Name Entity Recognition of Code-Mixed Data

  • Method-1

from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")

model = AutoModelForTokenClassification.from_pretrained("sagorsarker/codeswitch-hineng-ner-lince")

ner_model = pipeline('ner', model=model, tokenizer=tokenizer)

ner_model("put any hindi english code-mixed sentence")
  • Method-2
from codeswitch.codeswitch import NER
ner = NER('hin-eng')
text = "" # your mixed sentence 
result = ner.tag(text)
print(result)
Downloads last month
48
Safetensors
Model size
178M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sagorsarker/codeswitch-hineng-ner-lince