Whisper Large EdAcc

This model is a fine-tuned version of openai/whisper-large on the EdAcc dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0862

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
0.8893 0.6494 200 0.6173
0.4959 1.2987 400 0.5871
0.4654 1.9481 600 0.5799
0.308 2.5974 800 0.6095
0.2504 3.2468 1000 0.6823
0.1877 3.8961 1200 0.6828
0.1028 4.5455 1400 0.7804
0.0896 5.1948 1600 0.8240
0.0516 5.8442 1800 0.8491
0.0291 6.4935 2000 0.9035
0.0276 7.1429 2200 0.9402
0.0141 7.7922 2400 0.9443
0.0098 8.4416 2600 0.9972
0.0073 9.0909 2800 1.0118
0.0056 9.7403 3000 1.0176
0.0027 10.3896 3200 1.0468
0.0021 11.0390 3400 1.0564
0.0016 11.6883 3600 1.0703
0.0009 12.3377 3800 1.0840
0.0011 12.9870 4000 1.0862

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.3.1
  • Datasets 2.21.0
  • Tokenizers 0.19.1
Downloads last month
9
Safetensors
Model size
1.54B params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for sage-bergerson/whisper-large-edacc

Finetuned
(63)
this model

Dataset used to train sage-bergerson/whisper-large-edacc