File size: 432 Bytes
7404c6d f2b71e1 94d64b7 e0e00e7 94d64b7 e0e00e7 f2b71e1 e0e00e7 f2b71e1 e0e00e7 f2b71e1 e0e00e7 f2b71e1 e0e00e7 f2b71e1 e0e00e7 f2b71e1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
#Label 1 means relaxed and Label 0 means stressed
#To make custom predictions use the below code
# Use a pipeline as a high-level helper
from transformers import pipeline
pipe = pipeline("text-classification", model="sa-rehman/stress_classifier")
def predict(sentence):
pred=pipe.predict(sentence)
if pred[0].get("label")=='LABEL_1':
return "relaxed"
else:
return "stressed" |