Text2Text Generation
Transformers
Safetensors
mt5
Inference Endpoints

mT0-XL-detox-orpo

Resources:

Model Information

This is a multilingual 3.7B text detoxification model for 9 languages built on TextDetox 2024 shared task based on mT0-XL. The model was trained in a two-step setup: the first step is full fine-tuning on different parallel text detoxification datasets, and the second step is ORPO alignment on a self-annotated preference dataset collected using toxicity and similarity classifiers. See the paper for more details.

In terms of human evaluation, the model is a second-best approach on the TextDetox 2024 shared task. More precisely, the model shows state-of-the-art performance for the Ukrainian language, top-2 scores for Arabic, and near state-of-the-art performance for other languages.

Example usage

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

model = AutoModelForSeq2SeqLM.from_pretrained('s-nlp/mt0-xl-detox-orpo', device_map="auto")
tokenizer = AutoTokenizer.from_pretrained('s-nlp/mt0-xl-detox-orpo')

LANG_PROMPTS = {
   'zh': '排毒:',
   'es': 'Desintoxicar: ',
   'ru': 'Детоксифицируй: ',
   'ar': 'إزالة السموم: ',
   'hi': 'विषहरण: ',
   'uk': 'Детоксифікуй: ',
   'de': 'Entgiften: ',
   'am': 'መርዝ መርዝ: ',
   'en': 'Detoxify: ',
}

def detoxify(text, lang, model, tokenizer):
   encodings = tokenizer(LANG_PROMPTS[lang] + text, return_tensors='pt').to(model.device)
   
   outputs = model.generate(**encodings.to(model.device), 
                            max_length=128,
                            num_beams=10,
                            no_repeat_ngram_size=3,
                            repetition_penalty=1.2,
                            num_beam_groups=5,
                            diversity_penalty=2.5,
                            num_return_sequences=5,
                            early_stopping=True,
                            )
   
   return tokenizer.batch_decode(outputs, skip_special_tokens=True)

Citation

@inproceedings{smurfcat_at_pan,
  author       = {Elisei Rykov and
                  Konstantin Zaytsev and
                  Ivan Anisimov and
                  Alexandr Voronin},
  editor       = {Guglielmo Faggioli and
                  Nicola Ferro and
                  Petra Galusc{\'{a}}kov{\'{a}} and
                  Alba Garc{\'{\i}}a Seco de Herrera},
  title        = {SmurfCat at {PAN} 2024 TextDetox: Alignment of Multilingual Transformers
                  for Text Detoxification},
  booktitle    = {Working Notes of the Conference and Labs of the Evaluation Forum {(CLEF}
                  2024), Grenoble, France, 9-12 September, 2024},
  series       = {{CEUR} Workshop Proceedings},
  volume       = {3740},
  pages        = {2866--2871},
  publisher    = {CEUR-WS.org},
  year         = {2024},
  url          = {https://ceur-ws.org/Vol-3740/paper-276.pdf},
  timestamp    = {Wed, 21 Aug 2024 22:46:00 +0200},
  biburl       = {https://dblp.org/rec/conf/clef/RykovZAV24.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
Downloads last month
63
Safetensors
Model size
3.74B params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train s-nlp/mt0-xl-detox-orpo