File size: 19,594 Bytes
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
499f0dc
18a9dce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
import shutil
import warnings
from sklearn import metrics
from sklearn.metrics import confusion_matrix
from PIL import Image

warnings.filterwarnings("ignore")
import torch.utils.data as data
import os
import argparse
from sklearn.metrics import f1_score, confusion_matrix
from data_preprocessing.sam import SAM
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import matplotlib.pyplot as plt
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import numpy as np
import datetime
from torchsampler import ImbalancedDatasetSampler
from models.PosterV2_7cls import pyramid_trans_expr2


warnings.filterwarnings("ignore", category=UserWarning)

now = datetime.datetime.now()
time_str = now.strftime("[%m-%d]-[%H-%M]-")
if torch.backends.mps.is_available():
    device = "mps"
elif torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

print(f"Using device: {device}")

parser = argparse.ArgumentParser()
parser.add_argument("--data", type=str, default=r"raf-db/DATASET")
parser.add_argument(
    "--data_type",
    default="RAF-DB",
    choices=["RAF-DB", "AffectNet-7", "CAER-S"],
    type=str,
    help="dataset option",
)
parser.add_argument(
    "--checkpoint_path", type=str, default="./checkpoint/" + time_str + "model.pth"
)
parser.add_argument(
    "--best_checkpoint_path",
    type=str,
    default="./checkpoint/" + time_str + "model_best.pth",
)
parser.add_argument(
    "-j",
    "--workers",
    default=4,
    type=int,
    metavar="N",
    help="number of data loading workers",
)
parser.add_argument(
    "--epochs", default=200, type=int, metavar="N", help="number of total epochs to run"
)
parser.add_argument(
    "--start-epoch",
    default=0,
    type=int,
    metavar="N",
    help="manual epoch number (useful on restarts)",
)
parser.add_argument("-b", "--batch-size", default=2, type=int, metavar="N")
parser.add_argument(
    "--optimizer", type=str, default="adam", help="Optimizer, adam or sgd."
)

parser.add_argument(
    "--lr", "--learning-rate", default=0.000035, type=float, metavar="LR", dest="lr"
)
parser.add_argument("--momentum", default=0.9, type=float, metavar="M")
parser.add_argument(
    "--wd", "--weight-decay", default=1e-4, type=float, metavar="W", dest="weight_decay"
)
parser.add_argument(
    "-p", "--print-freq", default=30, type=int, metavar="N", help="print frequency"
)
parser.add_argument(
    "--resume", default=None, type=str, metavar="PATH", help="path to checkpoint"
)
parser.add_argument(
    "-e", "--evaluate", default=None, type=str, help="evaluate model on test set"
)
parser.add_argument("--beta", type=float, default=0.6)
parser.add_argument("--gpu", type=str, default="0")

parser.add_argument(
    "-i", "--image", type=str, help="upload a single image to test the prediction"
)
parser.add_argument("-t", "--test", type=str, help="test model on single image")
args = parser.parse_args()


def main():
    # os.environ["CUDA_VISIBLE_DEVICES"] = device
    best_acc = 0
    # print("Training time: " + now.strftime("%m-%d %H:%M"))

    # create model
    model = pyramid_trans_expr2(img_size=224, num_classes=7)

    model = torch.nn.DataParallel(model)
    model = model.to(device)

    criterion = torch.nn.CrossEntropyLoss()

    if args.optimizer == "adamw":
        base_optimizer = torch.optim.AdamW
    elif args.optimizer == "adam":
        base_optimizer = torch.optim.Adam
    elif args.optimizer == "sgd":
        base_optimizer = torch.optim.SGD
    else:
        raise ValueError("Optimizer not supported.")

    optimizer = SAM(
        model.parameters(),
        base_optimizer,
        lr=args.lr,
        rho=0.05,
        adaptive=False,
    )
    scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.98)
    recorder = RecorderMeter(args.epochs)
    recorder1 = RecorderMeter1(args.epochs)

    if args.resume:
        if os.path.isfile(args.resume):
            print("=> loading checkpoint '{}'".format(args.resume))
            checkpoint = torch.load(args.resume)
            args.start_epoch = checkpoint["epoch"]
            best_acc = checkpoint["best_acc"]
            recorder = checkpoint["recorder"]
            recorder1 = checkpoint["recorder1"]
            best_acc = best_acc.to()
            model.load_state_dict(checkpoint["state_dict"])
            optimizer.load_state_dict(checkpoint["optimizer"])
            print(
                "=> loaded checkpoint '{}' (epoch {})".format(
                    args.resume, checkpoint["epoch"]
                )
            )
        else:
            print("=> no checkpoint found at '{}'".format(args.resume))
    cudnn.benchmark = True

    # Data loading code
    traindir = os.path.join(args.data, "train")

    valdir = os.path.join(args.data, "test")

    if args.evaluate is None:
        if args.data_type == "RAF-DB":
            train_dataset = datasets.ImageFolder(
                traindir,
                transforms.Compose(
                    [
                        transforms.Resize((224, 224)),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize(
                            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                        ),
                        transforms.RandomErasing(scale=(0.02, 0.1)),
                    ]
                ),
            )
        else:
            train_dataset = datasets.ImageFolder(
                traindir,
                transforms.Compose(
                    [
                        transforms.Resize((224, 224)),
                        transforms.RandomHorizontalFlip(),
                        transforms.ToTensor(),
                        transforms.Normalize(
                            mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                        ),
                        transforms.RandomErasing(p=1, scale=(0.05, 0.05)),
                    ]
                ),
            )

        if args.data_type == "AffectNet-7":
            train_loader = torch.utils.data.DataLoader(
                train_dataset,
                sampler=ImbalancedDatasetSampler(train_dataset),
                batch_size=args.batch_size,
                shuffle=False,
                num_workers=args.workers,
                pin_memory=True,
            )

        else:
            train_loader = torch.utils.data.DataLoader(
                train_dataset,
                batch_size=args.batch_size,
                shuffle=True,
                num_workers=args.workers,
                pin_memory=True,
            )

    test_dataset = datasets.ImageFolder(
        valdir,
        transforms.Compose(
            [
                transforms.Resize((224, 224)),
                transforms.ToTensor(),
                transforms.Normalize(
                    mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
                ),
            ]
        ),
    )

    val_loader = torch.utils.data.DataLoader(
        test_dataset,
        batch_size=args.batch_size,
        shuffle=False,
        num_workers=args.workers,
        pin_memory=True,
    )

    if args.evaluate is not None:
        from validation import validate

        if os.path.isfile(args.evaluate):
            print("=> loading checkpoint '{}'".format(args.evaluate))
            checkpoint = torch.load(args.evaluate, map_location=device)
            best_acc = checkpoint["best_acc"]
            best_acc = best_acc.to()
            print(f"best_acc:{best_acc}")
            model.load_state_dict(checkpoint["state_dict"])
            print(
                "=> loaded checkpoint '{}' (epoch {})".format(
                    args.evaluate, checkpoint["epoch"]
                )
            )
        else:
            print("=> no checkpoint found at '{}'".format(args.evaluate))
        validate(val_loader, model, criterion, args)
        return

    if args.test is not None:
        from prediction import predict

        if os.path.isfile(args.test):
            print("=> loading checkpoint '{}'".format(args.test))
            checkpoint = torch.load(args.test, map_location=device)
            best_acc = checkpoint["best_acc"]
            best_acc = best_acc.to()
            print(f"best_acc:{best_acc}")
            model.load_state_dict(checkpoint["state_dict"])
            print(
                "=> loaded checkpoint '{}' (epoch {})".format(
                    args.test, checkpoint["epoch"]
                )
            )
        else:
            print("=> no checkpoint found at '{}'".format(args.test))
        predict(model, image_path=args.image)

        return
    matrix = None

    for epoch in range(args.start_epoch, args.epochs):
        current_learning_rate = optimizer.state_dict()["param_groups"][0]["lr"]
        print("Current learning rate: ", current_learning_rate)
        txt_name = "./log/" + time_str + "log.txt"
        with open(txt_name, "a") as f:
            f.write("Current learning rate: " + str(current_learning_rate) + "\n")

        # train for one epoch
        train_acc, train_los = train(
            train_loader, model, criterion, optimizer, epoch, args
        )

        # evaluate on validation set
        val_acc, val_los, output, target, D = validate(
            val_loader, model, criterion, args
        )

        scheduler.step()

        recorder.update(epoch, train_los, train_acc, val_los, val_acc)
        recorder1.update(output, target)

        curve_name = time_str + "cnn.png"
        recorder.plot_curve(os.path.join("./log/", curve_name))

        # remember best acc and save checkpoint
        is_best = val_acc > best_acc
        best_acc = max(val_acc, best_acc)

        print("Current best accuracy: ", best_acc.item())

        if is_best:
            matrix = D

        print("Current best matrix: ", matrix)

        txt_name = "./log/" + time_str + "log.txt"
        with open(txt_name, "a") as f:
            f.write("Current best accuracy: " + str(best_acc.item()) + "\n")

        save_checkpoint(
            {
                "epoch": epoch + 1,
                "state_dict": model.state_dict(),
                "best_acc": best_acc,
                "optimizer": optimizer.state_dict(),
                "recorder1": recorder1,
                "recorder": recorder,
            },
            is_best,
            args,
        )


def train(train_loader, model, criterion, optimizer, epoch, args):
    losses = AverageMeter("Loss", ":.4f")
    top1 = AverageMeter("Accuracy", ":6.3f")
    progress = ProgressMeter(
        len(train_loader), [losses, top1], prefix="Epoch: [{}]".format(epoch)
    )

    # switch to train mode
    model.train()

    for i, (images, target) in enumerate(train_loader):
        images = images.to(device)
        target = target.to(device)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, _ = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        # optimizer.step()
        optimizer.first_step(zero_grad=True)
        images = images.to(device)
        target = target.to(device)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, _ = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()
        loss.backward()
        optimizer.second_step(zero_grad=True)

        # print loss and accuracy
        if i % args.print_freq == 0:
            progress.display(i)

    return top1.avg, losses.avg


def save_checkpoint(state, is_best, args):
    torch.save(state, args.checkpoint_path)
    if is_best:
        best_state = state.pop("optimizer")
        torch.save(best_state, args.best_checkpoint_path)


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print_txt = "\t".join(entries)
        print(print_txt)
        txt_name = "./log/" + time_str + "log.txt"
        with open(txt_name, "a") as f:
            f.write(print_txt + "\n")

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)
        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))
        res = []
        for k in topk:
            correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res


labels = ["A", "B", "C", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O"]


class RecorderMeter1(object):
    """Computes and stores the minimum loss value and its epoch index"""

    def __init__(self, total_epoch):
        self.reset(total_epoch)

    def reset(self, total_epoch):
        self.total_epoch = total_epoch
        self.current_epoch = 0
        self.epoch_losses = np.zeros(
            (self.total_epoch, 2), dtype=np.float32
        )  # [epoch, train/val]
        self.epoch_accuracy = np.zeros(
            (self.total_epoch, 2), dtype=np.float32
        )  # [epoch, train/val]

    def update(self, output, target):
        self.y_pred = output
        self.y_true = target

    def plot_confusion_matrix(self, cm, title="Confusion Matrix", cmap=plt.cm.binary):
        plt.imshow(cm, interpolation="nearest", cmap=cmap)
        y_true = self.y_true
        y_pred = self.y_pred

        plt.title(title)
        plt.colorbar()
        xlocations = np.array(range(len(labels)))
        plt.xticks(xlocations, labels, rotation=90)
        plt.yticks(xlocations, labels)
        plt.ylabel("True label")
        plt.xlabel("Predicted label")

        cm = confusion_matrix(y_true, y_pred)
        np.set_printoptions(precision=2)
        cm_normalized = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
        plt.figure(figsize=(12, 8), dpi=120)

        ind_array = np.arange(len(labels))
        x, y = np.meshgrid(ind_array, ind_array)
        for x_val, y_val in zip(x.flatten(), y.flatten()):
            c = cm_normalized[y_val][x_val]
            if c > 0.01:
                plt.text(
                    x_val,
                    y_val,
                    "%0.2f" % (c,),
                    color="red",
                    fontsize=7,
                    va="center",
                    ha="center",
                )
        # offset the tick
        tick_marks = np.arange(len(7))
        plt.gca().set_xticks(tick_marks, minor=True)
        plt.gca().set_yticks(tick_marks, minor=True)
        plt.gca().xaxis.set_ticks_position("none")
        plt.gca().yaxis.set_ticks_position("none")
        plt.grid(True, which="minor", linestyle="-")
        plt.gcf().subplots_adjust(bottom=0.15)

        plot_confusion_matrix(cm_normalized, title="Normalized confusion matrix")
        # show confusion matrix
        plt.savefig("./log/confusion_matrix.png", format="png")
        # fig.savefig(save_path, dpi=dpi, bbox_inches='tight')
        print("Saved figure")
        plt.show()

    def matrix(self):
        target = self.y_true
        output = self.y_pred
        im_re_label = np.array(target)
        im_pre_label = np.array(output)
        y_ture = im_re_label.flatten()
        # im_re_label.transpose()
        y_pred = im_pre_label.flatten()
        im_pre_label.transpose()


class RecorderMeter(object):
    """Computes and stores the minimum loss value and its epoch index"""

    def __init__(self, total_epoch):
        self.reset(total_epoch)

    def reset(self, total_epoch):
        self.total_epoch = total_epoch
        self.current_epoch = 0
        self.epoch_losses = np.zeros(
            (self.total_epoch, 2), dtype=np.float32
        )  # [epoch, train/val]
        self.epoch_accuracy = np.zeros(
            (self.total_epoch, 2), dtype=np.float32
        )  # [epoch, train/val]

    def update(self, idx, train_loss, train_acc, val_loss, val_acc):
        self.epoch_losses[idx, 0] = train_loss * 30
        self.epoch_losses[idx, 1] = val_loss * 30
        self.epoch_accuracy[idx, 0] = train_acc
        self.epoch_accuracy[idx, 1] = val_acc
        self.current_epoch = idx + 1

    def plot_curve(self, save_path):
        title = "the accuracy/loss curve of train/val"
        dpi = 80
        width, height = 1800, 800
        legend_fontsize = 10
        figsize = width / float(dpi), height / float(dpi)

        fig = plt.figure(figsize=figsize)
        x_axis = np.array([i for i in range(self.total_epoch)])  # epochs
        y_axis = np.zeros(self.total_epoch)

        plt.xlim(0, self.total_epoch)
        plt.ylim(0, 100)
        interval_y = 5
        interval_x = 5
        plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x))
        plt.yticks(np.arange(0, 100 + interval_y, interval_y))
        plt.grid()
        plt.title(title, fontsize=20)
        plt.xlabel("the training epoch", fontsize=16)
        plt.ylabel("accuracy", fontsize=16)

        y_axis[:] = self.epoch_accuracy[:, 0]
        plt.plot(x_axis, y_axis, color="g", linestyle="-", label="train-accuracy", lw=2)
        plt.legend(loc=4, fontsize=legend_fontsize)

        y_axis[:] = self.epoch_accuracy[:, 1]
        plt.plot(x_axis, y_axis, color="y", linestyle="-", label="valid-accuracy", lw=2)
        plt.legend(loc=4, fontsize=legend_fontsize)

        y_axis[:] = self.epoch_losses[:, 0]
        plt.plot(x_axis, y_axis, color="g", linestyle=":", label="train-loss-x30", lw=2)
        plt.legend(loc=4, fontsize=legend_fontsize)

        y_axis[:] = self.epoch_losses[:, 1]
        plt.plot(x_axis, y_axis, color="y", linestyle=":", label="valid-loss-x30", lw=2)
        plt.legend(loc=4, fontsize=legend_fontsize)

        if save_path is not None:
            fig.savefig(save_path, dpi=dpi, bbox_inches="tight")
            print("Saved figure")
        plt.close(fig)


if __name__ == "__main__":
    main()